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As a beneficial component with critical impact, computer-aided decision making systems 

have infiltrated many fields, such as economics, medicine, architecture and agriculture. 

The latent capabilities for facilitating human work propel high-speed development of such 

systems. Effective decisions provided by such systems greatly reduce the expense of 

labor, energy, budget, etc. The computer-aided decision making system for traumatic 

injuries is one type of such systems that supplies suggestive opinions when dealing with 

the injuries resulted from accidents, battle, or illness. The functions may involve judging 

the type of illness, allocating the wounded according to battle injuries, deciding the 
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severity of symptoms for illness or injuries, managing the resources in the context of 

traumatic events, etc. 

The proposed computer-aided decision making system aims at estimating the severity of 

blood volume loss. Specifically speaking, accompanying many traumatic injuries, severe 

hemorrhage, a potentially life-threatening condition that requires immediate treatment, 

is a significant loss of blood volume in process resulting in decreased blood and oxygen 

perfusion of vital organs. Hemorrhage  and blood loss can occur in different levels such as 

mild, moderate, or severe. Our proposed system will assist physicians by estimating 

information such as the severity of blood volume loss and hemorrhage , so that timely 

measures can be taken to not only save lives but also reduce the long-term complications 

as well as the cost caused by unmatched operations and treatments. 

The general framework of the proposed research contains three tasks and many novel 

and transformative concepts are integrated into the system. First is the preprocessing of 

the raw signals. In this stage, adaptive filtering is adopted and customized to filter noise, 

and two detection algorithms (QRS complex detection and Systolic/Diastolic wave 

detection) are designed. The second process is to extract features. The proposed system 

combines features from time domain, frequency domain, nonlinear analysis, and multi-

model analysis to better represent the patterns when hemorrhage happens. Third, a 

machine learning algorithm is designed for classification of patterns. A novel machine 

learning algorithm, as a new version of error correcting output code (ECOC), is designed 

and investigated for high accuracy and real-time decision making. The features and 
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characteristics of this machine learning method are essential for the proposed computer-

aided trauma decision making system. The proposed system is tested agasint Lower Body 

Negative Pressure (LBNP) dataset, and the results indicate the accuracy and reliability of 

the proposed system. 
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{CHAPTER 1 Novelty and Contribution} 

 
 

The proposed computer-aided decision making system in traumatic injuries aims at 

estimating the severity of blood volume loss based on analysis of the physiological signals, 

and as such, can be used as an alarm system to be used by physicians and care givers to 

compensate for acute hemorrhage.  

There are several systems for processing physiological signals to detect hemorrhage. 

Andriy [1] investigates nerve activity and heart rate variability during severe hemorrhagic 

shock in sheep. The explored features from R-to-R interval (RRI) of the Electrocardiogram 

(ECG) involve normalized high-frequency (HFnu) and low-frequency (LFnu) powers of RRI, 

and their ratio (LFnu/HFnu). Additionally, non-linear methods are also applied that 

includes RRI complexity, RRI fractal dimension etc. Another group of methodologies 

comes from the work of Ji and Bsoul [2,3], in which multi-signals, such as ECG, Arterial 

Blood Pressure (ABP), and impedance are analyzed at the same time. The features, 

including wavelet measures on different level of detailed coefficients and approximation 

coefficients, the energy of different signals, and statistical measures on spatial feature 

signals are extracted to represent the pattern of hemorrhage. These features are 

extracted from ECG, such as P-to-Q interval, S-to-T interval and so on, in both time 

domain and frequency domain mainly by wavelet decomposition. 

 



www.manaraa.com

 

2 

The objective of our research is to design a computer-aided decision making system to 

estimate the severity of hemorrhage with higher prediction accuracy, near-real-time 

performance, and friendly human computer interface. Compared with the existing 

systems, the contributions of the proposed system will be demonstrated with the 

emphasis on the novelty of every sub-system of the proposed system as shown in Figure 

1.1, which shows the general framework of the proposed computer-aided decision 

making system. The specific tasks in the proposed system and their novelty 

(contributions) are described below. 

Preprocessing

Feature 

Extraction

Decision 

Making

Time domain

Frequency domain

Non-linear analysis

Multi-model analysis

Adaptive noise filter

QRS complex detection

Systolic&Destolic 

detection

Error Correcting Output 

Code

 

Figure 1. 1: Detailed tasks in the framework of computer-aided decision making system 
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1.1 Preprocessing 

The proposed computer-aided decision making system is based on multiple signals. For 

initial investigation, two signals, i.e. ECG and ABP, which are known to be closely linked 

with hypovolemia, are considered. The objective of preprocessing is to eliminate signal 

corrupted noise and extract feature signals for further information acquisition. In our 

research, three novelties are incorporated into the system. 

I. Design adaptive noise filter 

    Despite the significant noise on the biomedical signals, in particular in traumatic cases, 

the existing computer-aided decision making systems mainly make use of traditional 

filtering methods, filtering for both deterministic signal and stochastic signals, to 

eliminate noise. However, as to filter deterministic signal, the frequencies of the desired 

signals often overlap with the frequencies of the noise. Stochastic filters, on the other 

hand, often require that the desired signal to be a stationary stochastic process. In 

addition, such filters also require an approximate form of the desire signal to form the 

expected result. The proposed filter in this study can deal with the inputs that are 

deterministic or stochastic, stationary or non-stationary. Moreover, the proposed filter 

does not need any prior knowledge about the shape of the signals to be extracted, and 

as such, can be used for a variety of physiological signals. The details of designing 

adaptive noise filter are presented in Chapter 4. 

II. Algorithm for Detection of QRS Complex and other waves 
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   In this research, due to the central role of the QRS complex in determination of the 

state of the cardiovascular system, a main contribution of the proposed system is 

detection of the QRS complex with very high accuracy, in near-real-time and through a 

process that is robust against noise. Significantly different from the traditional QRS 

complex detection algorithms, the proposed QRS detection algorithm investigates the 

patterns with maximum energy of QRS complex. Hilbert transform and a novel threshold 

method are also applied in the proposed algorithm. Another novel step, called point 

insertion process, considers the variations of amplitude and period among different 

beats and uses these to improve the accuracy of the detection capability of the 

algorithm. Also, the detection of other waves in ECG signal is tried. The details of the 

algorithm are presented in Chapter 4. 

III. Algorithm for Detection of  Systolic and Diastolic Peaks  

       Arterial Blood Pressure (ABP) can be a suitable signal for diagnosis of blood volume 

loss. In the research, the proposed work develops a novel algorithm for detection of 

systolic and diastolic peaks. By determining the relationship among points intersected 

between positive and negative slopes in a feature signal extracted from the ABP, systolic 

and diastolic peaks are accurately detected. The advantages of the proposed method 

are two folds: a) It is not affected by the variations of the amplitude across the peaks, b) 

its fast and efficient processing performance makes it suitable for a number of real-time 

applications. The details of the algorithms are presented in Chapter 4. 

1.2 Feature Extraction Methods 
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In this step, the proposed method extracts features and checks whether the extracted 

features can represent the pattern associated with blood loss. These features include a 

set of features extracted in time domain, such as statistical indicators on R-to-R interval, 

P-to-R interval, amplitude of R waves, the energy of the short-term signal (or the feature 

signal), as well as features in frequency domain, such as power spectral density, spectral 

analysis in the wide or selected frequency ranges, etc. Some of these features are novel, 

which will be discussed later. In addition, although some of other features used in this 

study are not novel, the bundling of these features with the novel / modified features 

form a pool of measures that prove to provide highest degrees of detection accuracy. 

One of novel / modified features introduced in this study is briefly described below. 

Lempel-Ziv is a nonlinear measure that can potentially be used for complexity analysis of 

sequences. Biomedical signals, such as ECG and ABP during blood loss exhibits variations 

with nonlinear patterns. Capturing these highly nonlinear variations, in particular from 

ECG and heart rate variability (HRV) signals, however, calls for improved and enhanced 

versions of Lempel-Ziv. The proposed work evaluates the performance of the Lempel-Ziv 

measure for the blood loss application, identifies the disadvantages of Lempel-Ziv when 

addressing blood loss using ECG and HRV, and introduces an novel and improved 

version of the Lemple-Ziv to address these issues. The details of features extracted using 

nonlinear analysis are presented in Chapter 5. 

          In addition to specific features extracted from a single signal, the proposed method 

processes multiple signals and extracts features from them simultaneously. Multi-signal 
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processing is important vital as volume loss affect many biomedical signals at the same 

time and as such combined information from a variety of modalities as well as the 

relationship among these signals can better represent the severity of blood loss. The 

details of features extracted using multi-signal processing are presented in Chapter 5. 

1.3 Classification Method for Decision making 

In reality, many practical problems are multi-class applications. There are two prevalent 

models in designing classifiers for multi-class problems. One approach is one-versus-rest 

while the other method is all-pairs. Error correcting output codes (ECOC), a recently 

developed model for multi-class problems, supplies an option to deal with multi-class 

application effectively while increasing the flexibility in coping with multi-class problems. 

However, in order to make ECOC a more powerful multi-class tool, many components 

within the ECOC design needs further improvements. These components include: the 

code matrix, the encoding method, and the decoding process. Another contribution of 

the proposed work   is the design of a new version of ECOC in which the performance, in 

terms of its time complexity and accuracy, is improved. The details of the novel version 

of ECOC are presented in Chapter 6. 
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{CHAPTER 2 Introduction} 

 

2.1 Problem Statement 

2.1.1 Definition 

Trauma is a major cause of death and disability across the world. The events recognized 

as trauma include natural disasters (earthquakes, fires, floods, hurricanes, etc), physical 

assault (rape, incest, molestation, and domestic abuse), serious bodily harm, serious 

accidents (automobile, high-impact scenarios), falls or sports injuries, etc. The severity of 

the injury is directly related to the force of the impact, duration of impact, body part 

involved in the impact, injuring agent (blast, blunt or penetrating object), and any 

associated risk factors (age, preexisting medical conditions). Hemorrhage Shock (HS), a 

condition of depressed body functions as a reaction to trauma with loss of body fluids or 

lack of oxygen, is a potentially life-threatening condition that requires immediate 

treatment. Delay and lack of sufficient detailed information in dealing with hemorrhage 

will seriously threaten human life. While nowadays there are many measurement systems 

available to care givers to monitor patient’s physiological signals, there is an urgent need 

for computational methods to process these signals and form informative 

recommendations based the details in the data not visible to the human eyes. The 

objective of the proposed research is to process physiological signals in order to provide 

assistance to physicians by detecting the existence and severity level (mild, moderate, 
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severe) of blood loss. This would allow physicians / medical staff to take appropriate 

measures in a timely manner. This will not only save lives but also help alleviate potential 

shot-term and long-term complications / disabilities. The system will also help cut down 

the cost of providing care and treatments to patients. 

2.1.2 Motivation  

Trauma is a global problem with high risk and high prevalence. Across the world, over 5 

million people die every year (almost 16,000 persons a day) as a result of accidental or 

intentional traumatic injuries and around half a billion survivors of trauma suffer from a 

physical or psychological trauma as a result [4]. Motor vehicle accidents are one cause of 

trauma where the rate of fatalities is falling in many of the world's richest countries; 

however this rate is increasing rapidly in most developing countries where more than 80% 

of the world's population reside. Yet slightly less than 20% of the 5 million deaths from all 

types of injury that occur each year happen in the high-income 'developed' countries, 

which makes trauma a major issue for these nations. Age variations reveals that, in 2002, 

deaths from motor vehicle accidents were the second highest cause of death globally in 

the age-groups 5-14 and 15-29 years and the third highest cause of death among 30-44 

year olds.  

Trauma annually impacts hundreds of thousands of individuals and costs billions of 

dollars in direct expenditures and indirect losses. In 2000 alone, the 50 million injuries 

that required medical treatment ultimately cost $406 billion [5]. This includes estimates of 

$80.2 billion in medical care costs and $326 billion in productivity losses. Persons aged 25 
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to 44 years represented 30% of the U.S. population and 40% ($164 billion) of the total 

lifetime costs of injuries that occurred in 2000. Motor vehicle and fall injuries account for 

22% ($89 billion) and 20% ($81 billion) of the total lifetime costs of injuries that occurred 

in 2000. Upper extremity and lower extremity injuries each account for 17% ($68 billion) 

of the total lifetime costs of injuries that occurred in 2000. 

Considering the data given above, a computer-aided trauma decision making system that 

can help reduce mortality, long-term complications, and the cost associated with trauma 

will have a tremendous impact on the human life.  

2.2 Triage for Trauma Systems 

2.2.1 Introduction 

This study focuses on triage and assisting caregivers to optimize their effort throughout 

this process. During a typical triage process, the level of severity of injuries for the 

patients is “scored” (or “sorted”) on the basis of the actual or perceived degree of injury 

and they are assigned to the most appropriate care resources according to the score, in 

order to ensure optimal care and the best chance of survival. Generally speaking, the 

necessity of triage lies in the following aspects: 1) achieve a more optimal performance in 

allocating the resources used for trauma care, 2) cut down the time spent to take these 

measures, resulting in the increased survival rate.  

2.2.2 Existing Trauma Triage Systems 

An efficient “scoring” or “sorting” of potentially injured patients translates into 

customized care, better outcomes as well as improved resource utilization [6]. As 
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discussed above, a major complication in all traumatic injuries is hemorrhage and in 

particular management of hemorrhagic shock. The detection and scoring of hemorrhage 

which forms the foundations for any response to hemorrhagic shock is complex, under-

investigated and influenced by the dynamics and magnitude of volume depletion. Next, 

the existing systems for detection of hemorrhage are briefly reviewed. 

Heart rate variability (HRV) [7,8] is a physiological signal that is formed based on the 

variations of the time interval between consecutive heart beats. Other similar concepts 

used include: "cycle length variability", "heart period variability", "RR variability", where R 

is the time point corresponding to the peak of the R wave in the QRS complex in the ECG 

signal, and RR is the time interval between two successive R’s. The most widely used 

methods of extracting characteristic features from HRV can be categorized into time-

domain and frequency-domain methods. Other methods involve using different 

approached in non-linear analysis. 

As to time domain analysis, in [9] the standard deviation (SD) of average R-R intervals 

(RRISD), the square root of the mean squared differences of successive R-R intervals 

(RMSSD), heart rate, and the percentage of adjacent normal R-R intervals (pNN50) are 

calculated. For validation and comparison, two groups (patient and healthy) were formed. 

The results from time-domain analyses showed that heart rates (105  6 versus 90 6) 

and R-R intervals (605 37 versus 712 46), as well as global measures of HRV, including 

RRISD (58 14.6 versus 47 7), RMSSD (53 12 versus 43 7), and pNN50 (13 5 versus 

13 4), are statistically indistinguishable across the two groups. In order to analyze HRV 
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in time domain the root-mean-square successive difference (r-MSSD), which calculates 

the square root of the mean of the squared differences between successive beat-to-beat 

intervals over twenty four hours, and the mean of all the five minute standard deviations 

of beat-to-beat (SDNN) were also proposed. In [10], geometric measures, HRV triangular 

index (or RR triangular index) and the triangular interpolation of RR interval histogram 

(TINN) are employed as the criteria to predict patients’ outcome.  

As to the frequency analysis, Andriy investigates nerve activity and HRV during severe 

hemorrhagic shock in animal models (sheep) [1] . The explored features based on the R-to-

R interval (RRI) extracted from the ECG involve the normalized high-frequency (HFnu) and 

low-frequency (LFnu) powers of RRI as well as their ratio (LFnu/HFnu). In 2006, Cooke et 

al. demonstrated that an increase in the HF/LF ratio was associated with increased 

mortality in a series of 42 patients transported by helicopter to a trauma center [11]. 

Batchinsky et al. In [12], it showed that high frequency amplitude (HFA) distinguishes 

survivors from non-survivors with a data set as small as 100 beats. Ji and Bsoul build their 

model based on the wavelet transform. The features used in these studies include various 

statistical measures on different levels of both detailed and approximation coefficients 

formed by the wavelet transform.  

For non-linear analysis, all types of entropy metrics of heart rate variability [13] are 

introduced, such as approximate entropy, sample entropy, multiscale entropy, similarity 

of distributions, etc. In Andriy's model, some features based on non-linear methods were 

used. The complexity of RRI was measured by the approximate entropy (ApEn) and 
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sample entropy (SampEn) methods, while the RRI fractal dimension was measured by 

curve length (FDCL) approach. To better represent the patterns of hemorrhage in trauma, 

some studies combine the features coming from multi-signals, such as arterial blood 

pressure (ABP), impedance, etc. 

2.3 Proposed Computer-aided Decision Making System  

In the proposed system: 

1. new pre-processing systems are proposed to remove the noise. 

2. more effective methods to detect QRS complex and Systole&Diastole are 

introduced. 

3. better and more features are employed. 

4.  finally, a novel machine learning algorithm with superior classification accuracy 

and reliability is designed. The resulting system is expected to outperform the 

existing computer-aided trauma decision making systems for detection of the 

existence and severity of blood loss. 

2.4 Summary 

In this chapter, backgrounds to trauma care and trauma decision making systems for 

blood loss were presented. Also, the main advantages and shortcomings of some of the 

existing computer-aided decision making systems were briefly reviewed. Finally, the main 

objectives of the proposed systems in relation to the existing systems are outlined. 
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{Chapter 3: Proposed Method; Overview} 

 

3.1 Proposed Computer-aided Decision Making System 

The main objective of proposed computer-aided decision making system is to estimate 

the existence and severity of blood volume loss. The overall schematic diagram of the 

proposed computer-aided decision making system is presented in Figure 3.1. Each 

element of this diagram is briefly described below. 

I. System Input: 

      The inputs of the system are physiological signals, namely ECG and ABP. In this study, 

the data for training and testing of the system come from U.S. Army’s Lower Body 

Negative Pressure (LBNP) system that simulates blood loss [14]. The LBNP system has been 

consistently used by the community as an accurate model of the hemorrhage and has 

proved to a suitable system for such studies. 

II. Computational Algorithms: 

      The computational algorithms include the steps shown in the schematic diagram 

(Figure 3.1). The first step is denoising and extraction of features from physiological 

signals. The features based on time domain, frequency domain, non-linear analysis, and 

multi-signal analysis are extracted to form informative patterns representing the 

existence and severity of volume loss.  
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Figure 3. 1: Schematic diagram of the proposed computer-aided decision making system. 
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The formed features are further processed through operations such as scaling, feature 

selection, outlier exclusion, etc.  

Once the optimal feature set is formed, the novel machine learning tool is trained and 

tested to detect volume loss. The machine learning method is an improved version of 

ECOC that provides superior accuracy and reliability for multiclass classification scenarios. 

The system can operate in two different modes. One is to train the classifier offline (and 

only once), while in the other mode the classifier can be interactively trained. In either 

case, the system is tested using a set of new data.  

After building the model and all computational methods for the proposed system, an 

intuitive and user-friendly interface will be designed to allow users interact with the 

system and provide the computational methods the means to present the results to the 

care givers.  

III. System Output: 

      The output of the system is the severity of blood loss. The proposed system classifies 

the degree of volume loss into three different levels: mild, moderate, and severe. The 

criterion for dividing into different levels for volume loss resorts based on the mapping 

between the stages of LBNP and the above mentioned three levels for each individual. 

This mapping, which will be discussed later, has been formed by collaborating physicians 

and physiologists based on the collapse stage of each individual during the LBNP 

experiment. 
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The details for each of the elements discussed above will be provided in the following 

chapters.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

 

17 

{CHAPTER 4 Preprocessing} 

 

4.1 Overview 

The objective of preprocessing is two folds: one is to eliminate noise that corrupts the 

signal, while the other is to extract characteristics features from the signal, which 

sometimes involves forming derivate feature signals from the original signal. Different 

sources of noise [15] corrupt the essence of the signal, resulting in inaccurate information. 

In ECG signal, for example, the typical sources of noise include power line interference, 

motion artifacts and baseline drift. As to feature signals, the typical signals extracted from 

ECG includes RR signal (signal composing of the timing between consecutive R points in 

ECG), heart rate variability (HRV), and so on. In the following sections, first the main 

above-mentioned preprocessing methods often used for ECG analysis are briefly 

reviewed and then the proposed pre-processing algorithms are presented.  

4.2 Related Work 

4.2.1 Adaptive filter 

Biomedical signals are contaminated by several types of noise and interference. Filtering 

the noise is essentially important for acquiring accurate information. While some 

traditional filters are designed for pre-processing of deterministic signals, others deal with 

filtering of stochastic signals. The disadvantage of the former lies in the fact that the 

frequencies of the signals usually overlap with the frequencies of the noise. And the 

better result comes from the available knowledge about the deterministic signals. As such 
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stochastic filters are prevalently used in the field of biomedical signal processing. 

However, such filters often require some prior knowledge about the signal and make 

some assumptions on the nature of signal and noise. The most popular stochastic filters 

are Wiener filter and Kalman filter. 

I. Wiener filter 

       Wiener filter [16] defines a class of optimal linear filters that involves linear estimation 

of a desired signal or sequence ( )d n  from another related sequence ( )x n (Fig.4.1). ( )y n

and ( )e n are filter output and the estimation error, respectively.  𝑊(𝑧) is the Z-transform 

of the filter coefficients 0 1 1[ ]T

NW w w w   . 

W(z)
x(n) y(n)

d(n)

e(n)+

-

 

 
Figure 4. 1: The block schematic of Wiener filter 

 
Wiener filters are characterized by the following:  

--- Assumption:  signal and (additive) noise are stationary linear stochastic processes with 

known spectral characteristics or known autocorrelation and cross correlation. 

--- Requirement:  the filter must be physically realizable / causal. 

--- Performance criterion: minimum mean-square error (MMSE).  
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In the following part, a briefly deduction about the Wiener filter is given. Let 

0 1 1[ ]T

NW w w w   and 1 1[ ]T

n n n NX x x x    . Then, the output is ( ) Ty n X W . The 

performance function, or cost function, is then given by 

2 2

2

( ( )) (( ( ) ( )) )

[ ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]T T T T

E e n E d n y n

E d n W E X n d n E X n d n W W E X n X n W

   

   
     (1) 

For convenience, the cross-correlation vector, P, and autocorrelation matrix, R, are 

defined as: 

[ ( ) ( )]P E X n d n  

And,  

[ ( ) ( )]TR E X n X n  

To obtain the set of weights which minimizes the performance function, the derivatives of 

the cost function are set to zero, i.e. 0
w





. Finally, the optimal weight vector is 

obtained as:  

1

opW R P
                                                                

(2) 

 This form of solution for the Wiener filter is also known as the Wiener-Hopf equation. 

II. Kalman filter 

       The Kalman filter [17] is an efficient recursive filter that estimates the internal state of 

a linear dynamic system from a series of noisy measurements. It is used in a wide range of 

engineering and economic applications from radar and computer vision to estimation of 

structural macroeconomic models, to control theory and control systems engineering. As 
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in the Wiener filter that uses both auto correlation and the cross correlation of the 

received signal with the original data to optimize a cost function, the Kalman filter 

presents a prescription of the optimal MSE filter. However, Kalman describes the filter 

using state space techniques. Another difference is that the Kalman filter does not 

assume the signal to be stationary.  

Kalman filters are characterized by the following: 

---Assumption:  the average value of the noise is zero; no correlation exists between the 

noise sources; the noise covariances are known. 

--- Performance criterion: minimum mean-square error (MMSE). 

Next, a brief description of the Kalman filter is provided. A linear state space system is a 

process that can be described by the following two equations: 

State equation: 
1k k kx x w                                                    

(3) 

        Output equation: k k kz Hx v                                                  (4) 

where  
kx (n1) is the state vector of the process at time k;   (nn) is the state 

transition matrix of the process from state k to the state at k+1 which is assumed 

stationary over time; 
kw (n1) is a white noise process with a known covariance;  

kz (m

1) is the actual noisy measurement of x at time k; H (mn) is the noiseless connection 

between the state vector and the measurement vector, which is assumed stationary over 

time; and 
kv (m1) is the measurement error.  
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The covariance of the two noise models are assumed stationary over time and are given 

by: [ ]T

k kQ E w w and [ ]T

k kR E v v . The mean square error is then given by: 

[ ] [( )( ) ]T T

k k k k k k kP E e e E x x x x
 

    ( kx


 is the estimate of
kx ). Denoting the prior 

estimate of kx


as
"

kx


, it is possible to write an updated equation for the new estimate, 

combing the old estimate with measurement data as: 

" "

( )k k kk kx x K z H x
  

  
                                                            (5) 

where 
kK  is the Kalman gain.  After substitution of the equation into the mean square 

error function:  

" " " "( )T T T T

k k k k k k k k kP P K HP P H K K HP H R K    
                               (6) 

Differentiating [ ]kT P with respect to 
kK gives: " "[ ]

2( ) 2 ( )T Tk
k k k

k

dT P
HP K HP H R

dK
    , 

where T  means the trace of the matrix.  After setting it to zero, finally: 

" " 1( )T T

k k kK P H HP H R  
                                                        (7) 

Again, substituting 
kK into the new form of

kP , gives "(1 )k k kP K H P  .  Summarizing the 

process, the iterative Kalman filter follows the equations in Table 4.1. 
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Table 4. 1: Kalman Filter Recursive Algorithm 

 

Description Equation 

The covariance of noise models [ ]T

k kQ E w w    and   [ ]T

k kR E v v  

Update equation for the new estimate " "

( )k k kk k kx x K Hx v H x
  

     

State projection "

1k kx x
 

   

The error covariance matrix "(1 )k k kP K H P   

The prior estimate kP  "

1

T

k kP P Q      

The Kalman gain " " 1( )T T

k k kK P H HP H R    

 

III. Adaptive filter 

       As it can be  seen from the above discussion, both the Wiener filter and the Kalman 

filter need to satisfy some assumptions and rely on some prior knowledge. Some of the 

knowledge can be estimated from the improved version of the Wiener filter and Kalman 

filter, which may not be easy to satisfy in many practical applications. 

Widrow [18] put forward an alternative method for filtering noise, which is called adaptive 

filter (Fig.4.2). The method uses a “primary” input containing the corrupted signal and a 

“reference” input containing noise correlated with the primary noise.  The reference 

input is adaptively filtered and subtracted from the primary input to obtain the signal 
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estimate. Before subtraction, adaptive filtering allows the treatment of inputs that are 

deterministic or stochastic, stationary or time variable.  

Signal 

Source

Noise 

Source
Adaptive filter

Primary 

Input

Reference 

Input

Error

S+n0

n1

Filter 

Output

System 

Output

y

Z

e

+

-



 

 
Figure 4. 2: The adaptive noise cancelling concept 

 
As Fig 4.2 shows, a signal s is corrupted with a noise 

0n  , which is uncorrelated with the 

signal. The combined signal and noise 
0s n forms the primary input to the filter. A 

second input receives a noise 
1n uncorrelated with the signal but correlated, in some 

unknown way, with the noise
0n . The noise 

1n is filtered to produce an output y that is as 

close to as to
0n as possible. This output is subtracted from the primary input 

0s n to 

produce the system output
0z s n y   .  

Adaptive filters are characterized by the following: 

---Requirement: little or no prior knowledge of s , 0n , 1n , or of their interrelationships, is 

required. 

---Performance: Least Mean Squares (LMS). 
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The adaptation algorithm, LMS, is given by the following equations: 

T

k k ky w x                                                                    (8) 

k k kd y                                                                    (9) 

1k k k kw w e x                                                            (10) 

where w is the weight of the filter, k is the time index,  is the adaptation constant that 

determines the size of the step taken at each iteration along the estimated negative. LMS 

is an iterative gradient ( ke ) descent algorithm that uses an estimate of the gradient on the 

mean square error surface to seek the optimal vector with respect to the minimum mean 

square error.  

Next, a very description of the adaptive filter works is given. Squaring the output 

0z s n y   gives 2 2 2

0 0( ) 2 ( )z s n y s n y     . Taking expectations of both sides of 2z  

yields: 

2 2 2

0 0[ ] [ ] [( ) ] 2 [ ( )]E z E s E n y E s n y    
                                (11) 

Since s is uncorrelated with 
0n and y : 

2 2 2

0[ ] [ ] [( ) ]E z E s E n y  
                                         (12) 

Accordingly, the minimum output power is 2 2 2

0min( [ ]) [ ] min( [( ) ])E z E s E n y   . This 

means that when y is approaching to 
0n , the output of the filter achieves desirable 

performance. 

The applications of adaptive filter include adaptive noise cancellation, inverse plant 

modeling, adaptive inverse control, adaptive equalization, adaptive linear prediction, and 
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nonlinear filtering and prediction. For adaptive noise cancelling, if the noise is fixed in a 

fixed frequency, adaptive filter will act as notch filter [19,20]. In the later developments of 

adaptive filter, P. Laguna [21] designed a new version of adaptive filter (Fig 4.3), celled 

Adaptive Impulse Correlated Filter (AICF), in which in order to filter an event-related 

bioelectric signals 
kd (such as ECG), an impulse correlated reference input

kx was used. 

Unlike the original adaptive filter (Fig 4.2), the reference signal was not correlated with 

the noise, but it was correlated with the deterministic component in the primary signal. 

For ECG, 
kx is the actual signal, composed of a train of impulses positioned at the 

beginning of each pulse. This method shows superiority when referring to event-related 

bioelectric signals. However, the limitation of the method is that it assumes that the 

event-related bioelectric signals are periodic.  

1Z 1Z 1Z

0,kW
1,kW 2,kW

,L kW



k k kd s n  +

-
kx

ky

ke

 

 
Figure 4. 3: Adaptive impulse correlated filter 
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Thus, despite the capabilities of the filters described above, there are some outstanding 

problems that need to further be studied and addressed, in particular along the promising 

ideas of adaptive filter (Fig.4.2). For example, usually in primary signal, there are 

uncorrelated noise with reference signal, and in reference signal, there are signal 

correlated component. These factors will influence the effect of adaptive filter.  

4.2.2 QRS complex detection 

One of the most widely used signals in clinical practice is Electrocardiogram (ECG). ECG 

reflects the electrical activity within the heart and the time of its occurrence. A typical 

ECG cycle consists of P, QRS, and T waves (Fig 4.4). Irregular shapes of these waves are 

associated with complications and illnesses. These wave irregularities include shortened 

or prolonged QT interval, flattened or inverted T waves, prolonged T waves, prolonged S 

waves, missing P or T waves, and many small or large ripples. As a result, in order to 

detect these irregularities and diseases associated with them, it is critical to develop 

accurate method for detection of P, QRS and T waves. 

QRS detection algorithms [22,23] have been developed for several decades. The algorithms 

based on wavelet transform [24] are commonly used because they extract the most 

possible candidates as QRS wave from the original signal by applying different wavelet 

functions such as Daubechies 6 (db6), Haar, db2, db3, or even customized wavelets 

according to specific application . Also, wavelet methods remove noise by extracting fixed 

frequency signal from original signal. QRS detection algorithms based on the 

characteristic of signal shape are also effective methods for QRS detection [25,26,27,28].  
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These methods that acquire QRS complex according to the shape of ECG, usually use 

derivative approach. However, the disadvantage of these methods is that they require 

filtering noise so aggressively that they may affect the actual signal. Neural-Network-

based methods for QRS complex analysis [29] train artificial neural networks (ANN) with 

digitized ECG signal samples, and use the trained ANN for testing. Also, algorithms based 

on more sophisticated digital filters [30], filter bank [31], fuzzy methods [32], Hilbert 

Transform [33], syntactic method [34], mathematical morphology [35,36,37], and some other 

hybrid algorithms [38,39,40,41] have been introduced. 

 

 
Figure 4. 4: The components in ECG signal 

 
Generally, the common characteristic of these methods is using the following two steps: 

a) getting feature signal from the original ECG signal, and b) comparing the feature signal 

with a fixed or adaptive threshold.  The efficiency and creativity of these methods lies 

mainly in the first step. Often, some post-processing methods are adopted to achieve 

better result. 

4.2.3 Systole&Diastole Detection Algorithm  



www.manaraa.com

 

28 

To the best of our knowledge there is no systematic signal processing method to detect 

the systolic and diastolic peaks from Arterial Blood Pressure (ABP). Therefore, in this 

study, by observing the characteristics of ABP signal, a new algorithm which we refer to as 

Systole&Diastole detection algorithm, is desired for this purpose. This algorithm will be 

described later.   

Arterial Blood pressure (Fig 4.5) is produced when the heart pumps blood into the 

arteries of the body.  As the heart beats, the pressure rises to a maximum level, called the 

systolic blood pressure, and as it relaxes, it falls to a minimum level called the diastolic 

pressure. Blood pressure is expressed as Systolic value over Diastolic value. 

Systole

Diastole

One Cycle

 

 
Figure 4. 5: The components in ABP signal 

 
ABP signal has multiple diagnostic values in traumatic injuries, for instance: a) while the 

amplitude of Systolic and Diastolic values varies even in healthy subjects, and the degree 

of these variations is larger closer to onset to hemorrhagic shock; b) there may be some 

small “ripples” between Systolic and Diastolic peaks during hemorrhage.  

4.3 Proposed Method 

4.3.1 Noise removal 
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Through analysis and experiment towards adaptive filter, the feasibility dwells in notch 

filter using adaptive principle. The typical noise in ECG is baseline wander. In the 

proposed research, the realization of noise removal depends on adaptive notch filter and 

indepedent component analysis (ICA).  Using ICA to remove noise is based on the 

assumption that the ECG baseline wander comes from an independent and unkonwn 

source.  Experimental results in Chapter 7 prove the correctness of the assumption.  

 

 
Figure 4. 6: Schematic diagram of noise removal 
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Figure 4.6 shows the framework of the proposed method. As it can be, the first step of 

the proposed method is an adapative notch filter, desinged to form sub-signals of the 

ECG, as described later. Next, the proposed method utilizes ICA to remove the baseline 

drift. Finally, the independent component formed by the ICA as the output, which is 

originally labeled as the baseline wander, needs to be further adjusted to form a better 

estimate of the baseline wander. The advantages of the proposed method include the 

following aspects: 1) it reduces the errors produced by the overlapping in frequency 

between baseline wander and low frequency part of ECG; 2) it also cut down the errors 

induced by estimating independent component in ICA through using just low frequency 

signal.  

4.3.1.1 Adaptive notch filter 

The adaptive notch filter is based on the same theoretical foundations as the adaptive 

noise cancellation. As to the adaptive notch filter, the reference signal is the signal with 

one or multi fixed frequencies, which are treated as the frequencies to be excluded.  

The advantages of adaptive notch filter lie in the following aspects: 1) if the frequency of 

the interference is not precisely known, or the interference drifts in the frequency, the 

exact excluded frequency could be measured / adapted to during the filtering process; 2) 

the filter is tunable since the null point moves with the reference frequencies; 3) the 

adaptive notch filter can be made very sharp at the reference frequency; 4) through 

adjusting the parameters, the adaptive notch filter can be considered as a time-invariant 

filter by lessening the influence of the time varying components. The diagram of adaptive 
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noise cancelling is shown in Fig 4.7. The system is an N -stage tapped delay line (TDL). The 

weight of the filter is updated according to the following equations: 

k
T
kk xwy   

kkk yd   

kkkk xww 1                                                          (13) 

where x is the reference input; d is the desired response; y is the output of the filter; w is 

the weight of the filter;  is the adaptation constant; k is the time index. As described, the 

response from )(zE to )(zY includes two parts. In practical applications, it is feasible to 

make the time-varying component to be insignificant ( N ≈0) by changing the values of

N  and setting  as: 

)sin(

)sin(

Tw

TNw

r

r                                                             (14) 

where rw is the frequency of the interference. If the reference input is considered to be 

the following form:  

)cos(  TwCx r                                                        (15) 

The transfer function of adaptive notch filter can be expressed as: 
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r                                    (16) 

Therefore, the parameter N can be set to the fixed value as described above. It can be 

seen that the above-mentioned filter is very flexible and can be adjusted using the 
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adaption constants  and C to provide the desired bandwidth and depth of a suitable 

notch filter. 

 

 
Figure 4. 7: The diagram of adaptive noise cancelling 

 
4.3.1.2 Independent Component Analysis 

After applying the notch filter, the main step used is ICA. First, the “standard” ICA is 

described. ICA can be briefly explained using a simple example of separating two source 

signals )(1 ts and )(2 ts that were mixed by an unknown linear process.  Two different linear 

mixtures, )(1 tx and )(2 tx , are given as: 

2121111 )( scsctx                                                              (17) 

               2221212 )( scsctx                                                             (18) 

where 11c , 12c , 21c and 22c are unknown coefficients. The objective of the problem is to 

recover the signal W(z)
x(n) y(n)

d(n)

e(n)+

- and )(2 ts from mixture signals )(1 tx  and )(2 tx  without knowing any 
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prior information about the source signals )(1 ts and )(2 ts and the mixing process (i.e. 11c ,

12c , 21c and 22c ), except that )(1 ts and )(2 ts are statistically independent.  

In the generalized case, where there are more latent sources and more mixture signals, 

the formal definition of ICA is as follows:  

 niscscsctx niniii ,1)( 2211                                        (19) 

where )(tsi is called latent source, )(txi is the mixture signal, ijc is the mixing coefficient 

between )(txi and )(ts j , and n is the number of latent sources and mixture signals. The 

above formulation can be expressed as the following matrix form: 

SCX nn                                                                        (20) 

where X is the matrix of mixture signals, in which each column is one mixture signal; S is 

the matrix of latent signals, in which each column is one latent signal; and nnC  is the 

matrix for mixing coefficients.  

The feasibility of solving the ICA problem lies in the condition that the latent sources are 

independent from each other. According to the Central Limit Theorem, the distribution of 

a sum of independent random variables approaches a Gaussian distribution. This implies 

that the solution of ICA can be achieved when distribution diverges from Gaussianity.  The 

deviation from Guassianity can be measured using measures such as Negentropy. 

Negentropy is one measure of nongaussianity defined based on the concept of Entropy, 

which is the fundamental concept of the information theory. Entropy, E , as a measure of 

information in random variables is defined for a discrete random variable y , as: 
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i

ii cyPcyPyE )(log)()(                                                  (21) 

where ic is the possible values of Y , and )( icYP  means the probability when the value 

of Y is ic . For a continuous random variable y , entropy E is defined as the following 

equation: 

 dyyfyfyE ))(log()()(                                                      (22) 

where f is the probability distribution function. Negentropy, J , is then defined as 

follows: 

)()()( yEyEyJ gauss                                                       (23) 

where gaussiany  is a Gaussian random variable with the same covariance matrix as y . A 

fundamental conclusion in information theory is that a Gaussian variable has the largest 

entropy among all random variables of equal variance. Hence, negentropy is always non-

negative, and it is zero only if Y has a Gaussian distribution. 

The exact calculation of negentropy requires an accurate estimation of the probability 

distribution function, which may be computationally costly or data intensive. Therefore, it 

is often preferred to find simple approximations of negentropy. Simple approximations of 

negentropy have been introduced [42], which are based on the maximum entropy 

principle. In general, the following family of approximations is the most commonly used 

group: 





p

i

ii vGEyGEkyJ
1

2))](())(([)(                                           (24) 
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where ik are constants, v is a gaussian random variable with zero mean and unit variance. 

Often, the value of p and ik can be set to one. Therefore, the above formulation 

becomes: 

2))](())(([)( vGEyGEyJ                                              (25) 

The following formulations of G  functions have proved very useful in practical 

applications: 

)tanh()()cosh(log
1

)( 111
1

1 yaygya
a

yG                                (26) 

)2/exp()()2/exp(
1

)( 2
22

2
2

2
2 yayygya

a
yG                      (27) 

3
3

4
3 )(

4

1
)( yygyyG                                         (28) 

where 21 1  a , 12 a ,and g is the first derivative of the function G . 

Before applying the main processing operations of the ICA, it is often necessary to 

perform some preprocessing. Usually, the two different operations are conducted: 

centering and whitening. Centering requires that the random variable y is a zero-mean 

random variable and it is performed by subtracting its mean vector. Whitening will make 

the random variable uncorrelated and set their variances equal to unity by using the 

eigenvalue decomposition of their covariance matrix: 

TT DVDyyE }{            (29) 

where D  is the orthogonal matrix of eigenvectors, and V is the diagonal matrix of  

eigenvalues. Now, assuming that z is a new random variable after whitening: 
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yDDVz T2/1                                             (30) 

Whitening makes the problem change from estimating mixing matrix to estimating a new 

one
~

C : 

sCCsDDVz T
~

2/1                                         (31) 

Among several improvements of ICA, Fast and Fixed Point Independent Component 

Analysis [43], as a direct extension of the standard ICA, was developed for calculating 

latent sources with high speed. The basic rule of fast and fixed point independent 

component analysis is to find a direction, which can maximize nongaussianity of xwT
. 

Nongaussianity is decided according to the approximation of nongaussianity as 

mentioned above. The following is the basic description of the algorithm: 

1. Initialize a weight vector w  in one direction. 

2. Change the weight vector according to the following criteria: 

wxwgExwxgEw TT )}({)}({ ''  ,  

and normalize the weight vector as: 
'' / www   

3. If the weights have not converged, go back to step 2. 

where w  is the weight vector to calculate latent source xws T , and convergence 

means that the old weight vector and the new weight vector are in the same direction. In 

this study, the Fast and Fixed Point Independent Component Analysis is used as the 

implementation of ICA block. 
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4.3.2 QRS complex detection 

As discussed in 4.2.2 about the common characteristic in all kinds of QRS detection 

algorithms, in the proposed research, the endeavor also embodies in three aspects: 

extracting feature signal, thresholding, and post processing. In the following section, the 

details about the algorithm are given.  

4.3.2.1 The framework of QRS complex detection algorithm 

Fig 4.8 depicts the schematic diagram of the proposed algorithm. In the proposed 

method, the amplitude of R wave is used only as point of entry. Hilbert transform is 

applied to the original ECG to form a new signal in which the inverted R waves are 

identified. A novel threshold method that produces the minimum errors between two 

different maximal points is then applied to obtain the most likely R waves. Finally, a 

validation process is used to exclude possible false R waves. In the point insertion 

process, amplitude and period controllers are applied. The period controller helps in 

deciding whether to insert a missing R wave between two successive detected R waves; 

while the amplitude controller checks whether there are possible points of the signal 

qualifying as the potential R waves satisfying the insertion condition. Finally, the 

validation process excludes possible false R waves.  
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Figure 4. 8: Schematic diagram for R wave detection 

 
In the following sections, preprocessing, Hilbert Transform, thresholding, validation of R 

waves, and point insertion are described in detail. 

4.3.2.2 Preprocessing 

Due to interferences from extraneous factor, raw ECG signals are often noisy. Gray 

describes several main sources of noises and interferences, including power line 

interference, electrode contact noise, motion artifacts, and baseline drift. In order to 

make the result as accurate as possible, it is necessary to filter the noise, as it can greatly 

influences the result of QRS complex detection. The proposed research adopts the 

conclusion that QRS energy resides approximately in 5-15Hz. 
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In the following section, it is illustrated the reason to choose the scope of frequencies, 5-

15Hz. “the energy” refers to power spectral density (PSD) [44], describing the power of 

signal. The power spectrum ( ) ( ) jwS w R e d 






  of a WSS process ( )x t is the Fourier 

transform of its autocorrelation ( )R  , 

*

( ) { ( ) ( )}R E x t x t                                                      (32) 

The spectral density captures the frequency content of a stochastic process and helps 

identify periodicities.  

 

 
Figure 4. 9: Power spectral density of ECG signals 

 
 
4.3.2.3 Hilbert Transform 

In this study, Hilbert Transform is applied to form the feature signal. Hilbert transform is a 

linear operator, which takes a signal  tx , and produces another signal  th  [45]. 

    
 1 x

h t H x t d
t






 

                                         (33)
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In the frequency domain,  wH is an all-pass filter with -90  phase shift.   

 
0

sgn
0

j w
H w j w

j w

 
   


                                      (34) 

The following complex process,  tz ,  is called analytic signal associated with  tx : 

          z t x t jh t                                               (35) 

The Hilbert transform  th of  tx is used for the computation of the envelope  te of the 

analytic signal )(tz . 

22 )()()( thtxte 
                                          (36) 

In this study, we adopt and customize the approach, introduced in Benitez's research. In 

this method, using the fact that the Hilbert transform is an odd function, the envelope of 

first differential waveform of a signal is calculated. 

The advantage of adopting Hilbert transform to form the feature signal is that it can 

detect R wave correctly regardless of whether R wave is inverted or not. The claim is 

proved next. Showing the ECG signal as  tx ,  tx  is its inverted version, which has the 

inverted R waves. )(tf is the feature signal and T is the operator forming the feature 

signal. 

 

2 2
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dt dt
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 Therefore, for envelope of the signal, we final get the same value from the original signal 

and its inverted version.
 

4.3.2.4 Thresholding 

After identifying the R wave candidates, one of crucial steps in accurate R wave detection 

is selection of a threshold. For the thresholding process, there are two main approaches 

for selecting the threshold: fixed threshold [46,47,48] and adaptive threshold mechanisms. In 

this study, inspired by a thresholding technique used in an image processing method 

called OTSU [49], we developed a new thresholding method based on the overall 

characteristics of the feature signal. OTSU automatically performs histogram shape-based 

image thresholding and reduction of a gray level image to a binary image. The algorithm 

assumes that the image to be thresholded contains two classes of pixels (e.g. foreground 
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and background) and calculates the optimal threshold value separating these two classes 

so that their combined spread (intra-class variance) is minimal. 

Analyzing the feature signal reveals that indeed there exist two local maxima. One 

represents the baseline, while the other corresponds to the R peaks. Between RR 

intervals, irregular ECG signal may also have other local maxima because of ripples or 

other abnormalities. Fig 4.10 is the ECG signal. These local maxima can be taken as R 

waves by automated method for QRS detection, and as such, must be handled carefully. 

In order to reduce the errors caused by these irregular local maxima, in our proposed 

method, the thresholding technique is designed to consider these irregular maxima.  

 
 

Figure 4. 10: ECG signal  (dots stand for local maxima) 

 
The proposed method of threshold selection is as follows. First, the values of all local 

maxima in feature signal are obtained. Then, maximum ( Max) and minimum ( Min) of the 

feature signal or segmentation of the feature signal are extracted. The algorithm 

compares every value a  between Minand Max to minimize the error E . For each a , two 

sub-features signal  tf1  and  tf2
 are split from  tf , where  tf  represents the feature 

signal that includes only the local maxima. 
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   ],1[,)(|)(:1 niaififtf                                                 (40) 

   ],1[,)(|)(:2 niaififtf                                                 (41) 
 

Then, the average values of the sub-features minmax ,VV
 are calculated by following 

equations. 

  max 1V mean f t
                                                          (42) 

                                     tfmeanV 2min                                                            (43) 

Finally,  

  }{min
2

minmaxminmax VVNNE
a

   MaxMina ,                           (44)   

where minmax , NN are the amounts of local maximum points where values in feature signal 

are bigger or smaller than a , respectively. Therefore, the final threshold is 'a , which 

minimizes the error E . Fig 4.11 illustrates the optimum for thresholding. 

 

 
Figure 4. 11: Optimum for thresholding 
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Next, the proposed method is compared with three thresholding methods, which are 

considered as the most popular existing techniques:  

1.   txThreshold max  ,  

2.   tfmeanThreshold  where  tf  is the feature signal,  

3.        npeakAnEstimateAnEstimate .1.1   where Estimate is a function 

estimating threshold at point n, peak finds the amplitude at point n, and A is a 

constant) ,   

4. The method, presented in this study.  

In the first method, if some R peaks exceed the amplitudes of other R peaks, many weak 

R peaks will be missed. The third method is highly susceptible to irregular peaks and 

changes in the RR interval. This method would fail to find true R peaks in patients with 

moderate or severe hemorrhage. The second method and the forth method (i.e. the 

technique presented here), are tested and further compared in this study. Fig 4.12 (a) is 

the result of the second method. The line in black is the threshold line, which is calculated 

based on the entire feature signal. Fig 4.12 (b) shows the result of our proposed method 

applied to the same ECG signal. In Fig 4.12, the dark points above the threshold line are 

regarded as R wave candidates. As it can be seen, our proposed method can better 

distinguish R peaks from other local maxima. Such a capability greatly improves the 

accuracy of QRS detection, and simplifies the following steps to a large extend.  

 The main advantages of our proposed thresholding can be summarized as follows:  
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1. Acquiring threshold is based on the overall feature signal or the segmentation of 

the feature signal. This simplifies the process and allows extraction of R waves in 

real-time.  

2. It minimizes the error between two different types of local maxima, as described 

above, and therefore can improve the accuracy of R wave extraction.  

3. Compared with the adaptive thresholding, it dramatically reduces the errors due 

to the variations in the RR interval and the amplitude of R waves. 

 
(a) 

 

 
(b) 

 

 
Figure 4. 12: Thresholding 

4.3.2.5 Validation of the R waves 

In any thresholding process, there is a likelihood of false R detection because of 

prolonged T waves or ripples between two successive R waves. In order to address this, 

the common trend is to find the point with the maximum amplitude in a local window as 

the R wave. However, it is difficult to find a proper window size for this maximization 



www.manaraa.com

 

46 

step. In this study, we propose to exclude the false R waves by checking whether there is 

an overlap between two successive cycles based on the shape of ECG (Fig 4.13).  

R1&P2
R2&T1

Q2&S1
Q1

P1
T2

S2

 

 
Figure 4. 13: Addressing interference effect due to cycle overlapping 

 
For instance, in the example shown in Fig 4.13, R1, S1, T1 are overlapping with P2, Q2, R2, 

respectively; i.e. P1, Q1, R1, S1 and T1 belong to one cycle; while P2, Q2, R2, S2 and T2 

belong to another. The proposed algorithm picks up the maximum R wave, that is, R1 as 

final R wave.  

4.3.2.6 Point insertion process 

Up to this stage, the algorithm may miss some R waves with small amplitudes. The 

purpose of this step is to insert missing R waves using two controllers: amplitude 

controller and period controller.  
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Figure 4. 14: Point Insertion Process 

 
The period controller assists in deciding whether to search for and insert a missing R wave 

between two successively detected R waves. The amplitude controller checks whether 

there are peaks in the interval between the two detected R waves that could qualify as 

the possible R waves satisfying the insertion conditions. The algorithm automatically 

inserts an R wave if both conditions are satisfied. In this process, for different 

combinations of amplitude and period controllers, the correlation of the original signal 

and the new signal with the R wave insertion is calculated. When the value of the 

correlation reaches to the maximum, the algorithm achieves its final detection result. Fig 

4.14 is the schematic diagram for this point insertion process. Next, the amplitude 

controller, period controller, and model update process are described in more detail. 

1. Period controller  

        This parameter, adjusted by parameter , controls the acceptable or anticipated 

time interval between two consecutive R waves. The scope of period controller 

parameter is between 0.2 and 0.4. The period controller also helps to calculate threshold, 
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c , which decides whether to insert a missing R wave between two consecutively detected 

R waves, i.e. 

2

1

2

1

2

1 smmc  
                                                    (45) 

where 1m is mean of correctly detected RR interval in a given window, and 1s is the 

standard deviation of correctly detected RR interval in the same window. When the gap 

between two successive R waves exceeds c , the algorithm decides that a R wave has to 

be inserted between the two existing R's. 

2. Amplitude controller  

         This controller, adjusted by parameter , decides how large a peak in the signal 

between two successively detected R waves has to be to qualify as a missing R wave. The 

scope of amplitude controller parameter is between 1.8 and 3.0. The amplitude controller 

helps to calculate threshold e , which marks a point that may be P, Q, R, S or T. The 

parameter e  is defined as: 

2me                                                                       (46) 

where 2m is the mean of positive points in ECG signals in a given window. When the 

amplitude exceeds e , the algorithm marks the timing of the point and its amplitude. 

3. Insertion rule 

        We adopt four points ( aP , bP , cP , dP ) rule to decide whether there is a possible R 

wave. The rule requires that the amplitude of bP exceed the amplitude of aP , cP , and dP  . 
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The parameter dP  is also a threshold value for excluding noises (gap is used referred to 

dP ). Fig 4.15 shows the relation of the four points.  

When it satisfies the four points rule, it is a possible location for R wave insertion. To 

further verify the need to insert an R wave, the steps described next, are performed.  

 
 

Figure 4. 15: The relation of the four points 

 
4. Model update 

        First a model of ECG is formed. The initial model of ECG signal is formed randomly 

based on one cycle of ECG signal. As R wave detection proceeds, an updated model is 

created by calculating the average value of several most recent cycles of ECG.  

nfModel
n

i /
1

                                                               (47) 

where if is the signal for the ith detected cycle and n is the number of cycles included in 

the averaging process. These cycles are chosen to be the most recent ones.  

5) Correlation 
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The calculation of correlation reflects the degree of matching between the original 

feature signal and new produced signal. First, the formation of new signal is described in 

detail.  

Insert R waves

Period 

controller

Find possible peaks

Insert R waves

Amplitude 

controller

Yes

Yes

New signal

No

model

No

Do nothing

Original RR 

interval signal

 
R R

 

 
Figure 4. 16: Diagram of the formation of new signal 

 
For each detected RR interval, after checking period controller, the algorithm decides 

whether to insert R waves. If it does not insert any R waves, it will keep the original RR 

interval signal. If it does, however, the algorithm uses the amplitude controller to decide 

possible peaks, and find possible R peaks using four points rule. Then, the algorithm 

inserts the template (model) in the position of possible R peak. Fig 4.16 shows the 

diagram of the formation of new signal. 

4.3.2.7 Improvement of QRS Detection Method 
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The proposed QRS complex detection algorithm, discussed above, can benefit from some 

further improvements such as the followings. 

1. The general spectrum of the frequency of the signal analyzed in the proposed 

method is from 5 to 15Hz. However, for analysis of hemorrhage, restricting the 

frequency range to a smaller spectrum, as suggested in [5, 15], may improve the 

performance of methods such as ours. For different applications, this range may 

be needed to be adjusted. In general, in an application it is known beforehand 

that if there is too much noise in a certain range of frequency, then the frequency 

range of the method must be adjusted accordingly. 

2. The final position of R wave needs to adjust, because the maxima correspond to 

the intersection between the positive and negative slopes of original ECG signal. 

3. The parameters in point insertion process need to be adjusted for different ECG 

signals. Since a better algorithm is expected to have fewer parameter 

adjustments, a more systematic approach for the parameter adjustments can 

improve the algorithm. 

4.3.2.8 The detection of other waves 

Except for R wave, ECG signal includes other waves, which also are very important 

information suppliers. The following section illustrates the detection of P wave, Q wave, S 

wave and T wave. Often, the key factor in detection of other waves is that the other 

waves occur at relatively regular intervals with respect to the position of R wave. 

However, irregular ECG signals due to illnesses , such as the abnormal patterns shown in 
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Fig 4.17, can violate this perception. Therefore, according to the type of abnormal ECG, 

neccessary postprocessing is added to deal with these special cases. 

  

  

 
Figure 4. 17: Abnormal shapes of ECG signal 

 
4.3.3 Systole&Diastole detection 

The characteristic of Arterial Blood Pressure was shown above. In the first glance, it 

seems that simple thresholing might detect both systolic and diastolic peaks. However, in 

order to avoid the complications involved in setting and changing thresholds (due to the 

irregular period and amplitude of ABP signal), in the proposed method, the microscopic 

angle approach is taken. The design idea is to decompose the feature signal into several 

components, which make up all the possible situations.  Then, detecting Systole&Diastole 

becomes a problem, which finds the target by considering the relations in the 
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components. In the following section, preprocessing, the formation of two signals, 

components of the model and operations for combination step are described in detail. 

Preprocessing

Output Signal Feature Signal

Model Combination

result

 

 
Figure 4. 18: Schematic diagram for Systole&Diastole detection 

 
4.3.3.1 Preprocessing 

In the proposed research, because of the typical lack of noise, the objective of 

preprocessing in Systole&Diastole detection in ABP signal is to obtain new signal that is 

more suitable for further processing. The operation used in this step is smoothing that 

reduces the ripples in the ABP signal. There are two types of new signal produced. One is 

the signal after smoothing, called the “source signal”. The other one is the signal for 

labeling position in order to facilitate the localization of the important turning points, 

called the “sign signal”. 
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Figure 4. 19: The relation between source signal and sign signal 

 
In the sign signal, for the points that correspond to the positive slope in the source signal, 

the value of the sign signal is “+1”; while the points corresponding to the negative slope 

in the source signal, get the value of “-1” in the sign signal. The relationship between the 

two signals is shown in Fig 4.19. 

4.3.3.2 Model 

After smoothing, the source signal is decomposed into several components as shown in 

Fig 4.20. The model, designed to best capture the characteristics of the ABP signal, is built 

on four points, which are four successive intersections between negative and positive 

slopes. In the model, there is no limitation on the relation between amplitude of 2p nad 

4p ; the parameter 'thresholdH' is used to decide the boundary of the components; the 

four points locate in one cycle, which is controled by another parameter 'thresholdP'. 

These components are defined and shown as follows: 

1. Component#1: ‘|amplitude ( 3p )-amplitude ( 1p )|<thresholdH’.  

2. Component#2: ‘|amplitude ( 3p )-amplitude ( 1p )|>thresholdH’ && ‘location ( 3p )-

location ()<thresholdP/4’. 
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3. Component#3: ‘|amplitude ( 3p )-amplitude ( 1p )|>thresholdH’ && ‘location ( 3p )-

location ( 1p )>thresholdP/4’. 

 

4p Component #1 
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The second catogory in Component #2 

 
 

 
       

 The first catogory in Component #3 
 
 

 

 
The second catogory in Component #3 

 
Figure 4. 20: The model of ABP signal 

 
 
4.3.3.3 Combination 
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The objective of combination is to know how to use these components in the model.  

First, using the sign signal to find the first four points. Then, judge the relation among the 

four points by referring to the components in the model. The  operations for detecting 

and shifting points to new places fall into three stages (Fig 4.21):  

1. Stage1: the first component plays role. If 1p and 3p  are in one cycle, 1p is one 

systolic peak and shift 2p , 3p  and 4p . If not, 1p is one systolic peak and shift 1p , 

2p , 3p  and 4p . 

2. Stage2: the second component plays role. If it belongs to the first sub-catogory, 

shift 2p , 3p  and 4p . If it belongs to the second sub-catogory, 3p is one systolic 

peak and shift 1p , 2p , 3p  and 4p . 

3. Stage3: the third component plays role. If 1p and 3p  are not in one cycle, 1p is one 

systolic peak and shift 1p , 2p , 3p and 4p . If it belongs to the first sub-catogory, 1p

is one systolic peak and shift 1p , 2p , 3p  and 4p . If it belongs to the second sub-

catogory, 3p is one systolic peak and shift 1p , 2p , 3p  and 4p . 

 

 
Figure 4. 21: The stage divide in ABP signal 

 

stage1 

stage2 

stage3 
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4.3.3.4 Initial Assessment of Systole&Diastole Detection Method 

For the proposed Systole&Diastole detection algorithm, the following observations and 

considerations that can be made. 

1. Observing the spectrum of the ABP signal, it becomes evident that there may be 

no fixed limits on the frequency range for Systole&Diastole events in the ABP 

signal. Therefore, any frequency adjustment of the Systole&Diastole detection 

may not be very helpful. 

2. Compared with the method using a global or local threshold, the advantage is that 

the proposed method does not rely on such parameters. This is due to the fact 

that we adopt a microscopic parameters approach in which the settings for the 

parameters are flexible. 

3. The proposed Systole&Diastole detection algorithm still needs to be improved. 

Again, in this approach, the use of fewer microscopic parameters and the logicality 

of the components in the model are preferred. 

4.4 Summary 

In this chapter, a brief review of the basic methods as well as the description of the 

proposed techniques for preprocessing is provided. These tasks involve denoising, QRS 

complex detection, and Systole & Diastole detection.  For each task, the related research, 

the research direction/methodology, and the analysis of algorithm were presented.
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{CHAPTER 5 Feature Extraction} 

 

5.1 Overview 

After preprocessing, feature extraction will operate on the processed signals to collect 

different types of informative features.  In our particular application, these features are 

expected to better represent the patterns of hemorrhage / blood volume loss. The 

‘Existing Trauma Triage Systems’ in Chapter 2 reviewed some trauma triage systems, in 

which different kinds of features are adopted to represent hemorrhage. Our proposed 

system will attempt to explore possibly superior features. The defined features will be in 

time domain, frequency domain, created using nonlinear analysis, and formed based on 

multi-model analysis. In the following part, the features will be listed, and necessary 

explanations will be added to some specific features. 

5.2 Proposed Method 

5.2.1 Features from ECG 

During hemorrhage, the time variations, although not always visible to the human eyes, 

occur in the shape and structure of ECG signal. Therefore, the proposed work attempt to 

extract features based on these time patterns and indicators. Also, the features in 

frequency domain are explored to further increase and enhance the accuracy of the 

reasearch. Table 5.1 lists all the explored features in time domain, frequency domain, and 

nonlinear analysis from ECG signals. 
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Table 5. 1: Features in ECG 

 

Feature Type Name of the features 

wave interval PP interval; QQ interval; RR interval; SS interval; TT interval 

relative wave interval 

relative PQ interval; relative PR interval; relative PS interval; 

relative PT interval; relative QS interval; relative QT interval; 

relative RT interval; relative ST interval; 

wave amplitude amplitude of P wave, S wave and T wave 

relative wave amplitude 
relative PQ amplitude; relative PS amplitude; relative PT 

amplitude; relative QT amplitude 

frequency in one window frequency with maximum amplitude 

frequency in one cycle 
maximim amplitude in frequency spectrum; frequency with 

maximum amplitude 

signal averaging 
PQ interval averaging; QS interval averaging; ST interval 

averaging; PQRST interval averaging 

nonlinear analysis improved Lempel-ziv 

 

5.2.1.1 Details for some specific features 

I. wave interval. 
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The wavel interval feature represents the same information as the heart rate, 

because the calculation of heart rate obeys the following equation ( fs is sample rate; 

RR is the average sample points for one RR interval): 

 

intervalRR

fs60
Heartrate


                                                            (48) 

II. relative wave interval. 

This feature reflects the relative time intervals in one cycle and is calculated as: 

ervalRR

ervalPQ
ervalwaverelativePQ

int

int
int                                            (49) 

III. relative wave amplitude 

The calculation of relative wave amplitude is based on the following equation: 

amplitudeQamplitudePamplitudePQrelative                                 (50) 

IV. frequency in one window and in one cycle 

The frequency spectrum is calculated based on signal in one window and in one 

cycle. The features are maximim amplitude in frequency spectrum and frequency with 

maximum amplitude. 

V. signal averaging 

For signal in every window, there are several subsignals (such are RR interval). The 

features are obtained based on the sum of subsignals. Although the length of each 

subsignal in every window is different, the interpolation is employed to resize  all 

subsignals into fixed lengths. Then, similar frequency information are extracted from 

the summation of the subsignals.  
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VI. improved Lempel-Ziv 

As mentioned above, the conventional Lempel-Ziv can not extract enough 

information from biomedical signals to better represent hemorrhage. An improved 

version of Lempel-ziv has been tried to capture more information. The methodology 

and the effectiveness of improved Lempel-Ziv will be illustrated in the following 

sections. 

5.2.2 Features from ABP 

ABP is another important biomedical signal  whose variations are also known to be closely 

associated with blood volume loss. The intention of this study is to find features that 

better capture these variations/patterns/featrues.  

Table 5. 2: Features in ABP 

 

Feature type Name of the features 

features based on cycle 

number of bumps; duration of each bump; energy; the 

frequency in one cycle; phase; concave&convex of the 

signal; relative value toward the left and the up; 

features based on one window 

frequency information; time duration between Systole 

and Diastole; amplitude difference between Systole 

and Diastole; mean arterial pressure; number of 

Systoles in one window;  

others variation of the wander; slope of lines; proposed novel 
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/ improved Lempel-ziv; respiration rate extracted from 

ABP; 

 

Table 5.2 lists the explored features based on ABP signal. This list is expected to grow and 

the ones mentioned in Table 5.2 will be further enhanced and improved in the future. 

5.2.2.1 Details for some specific features 

In the proposed method, the informative featrues are extracted from individual cycles of 

a subsignal. The following figures provide better a demonstratation of the extracted 

features. 

I. number of bumps 

For ABP signal, in each cycle, there are several “bumps” as shown in Fig 5.1. 

Depending on the complications  and/or illness, the ABP shows differences in the number 

of these bumps in each cycle. In the proposed method, the number of these bumps is 

captured as one feature to represent the possible existence and/or severity of blood loss. 

 
 

Figure 5. 1. Bumps in one cycle 

 

bumps 
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II. duration of each bump 

The duration of each bump, e.g. the time interval between A point and B point as 

shown in Fig 5.2, forms another family of features. 

 
 

Figure 5. 2. The duration of each bump 

 
III. concave&convex of the signal 

The purpose of the feature is to show the area difference under the red line and 

the blue line. The difference between these two cureves show how convex (or 

concave) the ABP signal is. 

 

 
Figure 5. 3. The concave&convex of the signal 

A 
B 
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IV. relative value toward the left and the up 

The relative value toward the left is obtained by dividing w using W, and the 

relative value toward the up is gotten by dividing h using H, where W is the width of 

the entire cycle measure from the first peak, w is the time interval between the frist 

and the second peaks, H is the height of the first peak, and finally h is the height of 

the second peak. 

  
 

Figure 5. 4. The relative value toward the left and the up 

 
V. mean arterial pressure 

The calculation of the mean arterial pressure obeys the following equation: 

Diastole)-(Systole1/3DiastolePressure ArterialMean                                (51) 

VI. variation of the wander 

The variation of the wander reflects the level of deviations from the amplitude of 

Systolic peaks and is evaluated as  

) )  Systole( min -  systole( of Deviation  Standard wanderthe of variation The   (52) 

where  systole is the amplitude in one systolic peak and Systole is a vector containning 

all amplitudes of systolic peaks.  
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VII. slope of the lines 

For ABP, the Systolic peaks present rise and fall as the proceeding of hemorrhage. 

In the research, the lines built on Systolic peaks are interpolated, and the weighted 

slopes are used as features.  

 

 

Figure 5. 5. The slope of the lines 

The formulation of weighted slopes is based on the following equation:  

Num *  slope    slopeWeight                                                 (53) 

where “slope” is the slope of the interpolated line and Num is the number of points in 

the interpolated line. 

VIII. improved Lempel-Ziv 

For dealing with ABP signal, the improved Lempel-ziv is also adopted to capture 

more information to better represent blood volume loss. The methodology and the 

effectiveness of the improved Lempel-Ziv will be explained later.  

IX. respiration rate 
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In this study, respiration rate extracted from ABP is employed as another feature. 

The curve of Systolic peaks is formed using interpolation, and the maximum frequency 

is acquired by using Fourier Transform. Our results showed that the respiration rate 

extracted from ABP using our method can achieve more than eighty percentage of 

accuracy in predicting the real (actual) respiration rate +/- one breath/minute. As 

such, the proposed method allows avoiding the inconvenience of using conventional 

respiration rate measurements systems, and at the same time, provides reasonable 

accuracy in predicting the real respiratory rate. In the following part, the simulated 

results are given. As a standard to verify the accuracy for estimation, PETCO2 from 

LBNP is used. The real respiration rate is acquired by locating the maximum frequency 

of PETCO2 signal beween 0.1 Hz and 0.5Hz. Table 5.3 is the estimation result. The first 

column shows the window size and the frequency scope to locate the maximum 

frequency. The second and the third column present the accuracy difference by 

predicting the real respiration rate with or without +/- one breath/minute. 

Table 5. 3 Estimation result 

 

Seconds/frequency scope 
Without "+/- one 

breath/minute" 

With "+/- one 

breath/minute" 

15 sec / [0.1, 0.5] 58.24% 80.53% 

30 sec / [0.15, 0.5] 59.91% 79.03% 

60 sec / [0.15, 0.5] 58.7% 72.50% 
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5.2.3 Details for features from nonlinear analysis 

Lempel-Ziv [50] is a measure that analyzes symbolic sequence complexity. Lempel-ziv 

algorithm is an explicitly computable measure for finite sequences measuring the 

complexity of a sequence by quantifying the minimal number of steps required for its 

synthesis throughout a specific process. At each step of the synthesis process, two 

operations are allowed: generation of a new symbol, and copying a fragment from the 

part of the sequence that has already been synthesized. 

As a powerful tool to estimate complexity, Lempel-Ziv has recently become popular in 

many fields [51,52,53,54] and is used to measure the degree of randomness in complex 

sequences. The Lempel-Ziv’s applications in processing of physiological signals have been 

numerous (see for instance [55]) in which this measure has been used to analyze the 

complexity of biomedical signals in different conditions. 

Hemorrhage causes changes in the shape of biomedical signals such as ECG and ABP. 

Capturing potential hemorrhage-caused changes in patterns of randomness in these 

signals may not only require the use of general Lempel-Ziv but also improved versions of 

Lempel-ziv. Therefore, the proposed work will include expansions and extensions of the 

general idea of Lempel-Ziv. Specifically, the project will target enhancing the Lempel-Ziv’s 

performance in detecting the changes in the instinct randomness when hemorrhage 

happens.   

5.2.3.1 General Lempel-Ziv 
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First, some basic concepts necessary to describe Lempel-ziv measure are introduced and 

explained. 

Assume that
*A is the set of all finite sequences over a finite alphabet A ; and S is a 

sequence and ( )l S is the length of S . Next define nA  as the formulation of the above 

mentioned object: 

*{ | ( ) }, 0nA S A l S n n                                                         (54) 

Further define   as the null sequence (the length of the sequence is zero). Note that    

is an element of *A . In this formulation, a substring of S will be expressed as ( , )S i j , 

which starts from position i and ends at position j . If i j , ( , )S i j will be .  

Possible relationships may exist between two sequences mQ A and nR A . For instance, 

if a sequence is defined as: 
1 1m nS q q r r   ; Q is called a prefix of S , and S is called an 

extension of Q . If the length of Q is less than the length of S , Q is called a proper prefix 

of S .  

The vocabulary of a sequence S , ( )v S , is defined as the subset of all substrings or words 

( , )S i j of S . Also, a word is called an eigenword if it does not belong to the vocabulary of 

any proper prefix of S . The eigenvocabulary of S is defined as composed of all 

eigenwords of S . There is an operator , which can identify all prefixes of S , i.e. 

(1, ( ) )iS S l S i   . It means that the prefix of  S is the sub-string from the beginning of 

the string S to the position, which is i  points far from the end of the string S .  
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The concept of Lempel-ziv measure treats the measure of complexity as a self delimiting 

learning machine, i.e. it scans a sequence
1 nS s s  from left to right, and if a new word 

(eigenword) is met, the measure of Lempel-Ziv complexity will increase. Therefore, the 

measure of Lempel-ziv is built based on the structure of the sequence S . 

The building of the sequence S can be viewed as extending a sequence S by adding one 

of its words Q  to generate an extension R SQ . The only provision is that Q is an 

element of ( )R v R  . 

Next, let’s distinguish two items: producibility and reproducibility. An extension R SQ of 

S is reproducible from S  ( S -> R ) if ( )Q v R  . A nonnull sequence S is producible from 

its prefix, i.e. (1, )S j ( (1, )S j S ), if (1, )S j S   and ( )j l S . From the definition of 

these two items, the distinction is clarified, i.e. the last symbol of (1, )S j may be different 

from the last symbol of S if it is producibility.  

Finally, let’s focus on the production of complexity of a sequence. The nonnull sequence 

S is regarded as a production ( SQ  ) from some proper prefix of S . A production 

process of S is a mechanism to generate S step by step. The result (1, )iS h of step i is 

called the ith state of the process. Assuming that the entire process has m steps, the 

parsing of S will become: 

      
1 2 1 1 2 1( ) ( ) ( ) ( ) (1, ) ( 1, ) ( , )m m mH S H S H S H S S h S h h S h h                    (55) 

where ( )iH S is called the components of S , and
0 0h  , ( )mh l S . A component ( )iH S

and the corresponding production step 
1(1, ) (1, )i iS h S h  are called exhaustive if
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),1(),1( 1 ii hShS  . The proposed Lempel-ziv complex ( )c S is the number of components in

( )H S , whose components are all exhaustive.  

The following is the description of Lempel-ziv complexity.  

1. Let S and Q denote two subsequences of P and SQ be the concatenation of S

and Q , while sequence SQ is derived from SQ after its last character is deleted. 

( )v SQ denotes the vocabulary of all different subsequences of SQ . Initially, 

( ) 1c n  , (1)S s , (2)Q s , and therefore, (1)SQ s  . 

2.  In general, (1), (2), , ( ), ( 1)S s s s r Q s r   , then (1), (2), , ( )SQ s s s r  ; if Q

belongs to ( )v SQ , then Q is a subsequence of SQ , and not a new sequence. 

3.  Renew Q to be ( 1), ( 2)s r s r  , and judge if Q belongs to ( )v SQ or not. 

4. Repeat the previous steps until Q does not belong to ( )v SQ . Now, 

( 1), ( 2), , ( )Q s r s r s r i    is not a subsequence of (1), (2), , ( 1)SQ s s s r i   , 

so increase ( )c n by one. 

5. Thereafter, S is renewed to be (1), (2), , ( )S s s s r i  , and ( 1)Q s r i   . 

Repeat until Q is the last character. 

5.2.3.2 Improved Lempel-Ziv 

As it can be seen from the above description, the measure of Lempel-ziv is the number of 

eigenwords in building the sequence.  As shown in Chapter 7, the results of using this 

measure on biomedical signals do not exhibit a clear pattern for hemorrhage. In order to 

better represent the patterns of hemorrhage, an improved version of Lempel-Ziv will be 
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need. By looking through the related research, the possible improvements can come from 

the improvements made to: 1) the thresholds used in forming the symbol signals [56]; 2) 

the number of symbols used in the symbol signals . 

The conventional Lempel-Ziv loses many information due to the transformation to the 

symbolic signal. At the same time, if the conventional Lempel-Ziv is operated on raw 

signal, it will be extremely time consumption, which is not desirable for a real time 

system. Considering the two factors in this study, extending the element in the 

conventional Lempel-Ziv becomes the entry point for the improved Lempel-Ziv. 

 

 
Figure 5. 6. The improved Lempel-ziv 

 
As it can be seen from Fig 5.6, the first line is the sysmbolic signal, which is transfromed 

from the raw signal using a particular thresholding method. In the improved Lempel-Ziv, 

the '0'/'1' sysmbol is represented by another symbol. For example, '0' can be replaced 

with 'a', and '1' can be replaced with 'A'. As a matter of fact, the symbolic signal in the 

first line and the symbolic signal in the second line are the same. The only difference is 
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that they use different symbols to represent the symbolic signal. The novelty in the 

improved Lempel-Ziv lies in extending the basic element. Seeing from the third line in Fig 

5.6, there are two different symbolic signals represented by two different colors. These 

two symbolic signals are acquired using the same method as the conventional Lempel-Ziv, 

but they represent different information in biomedical signals compared with the 

symbolic signal in the first line. One is the red one, which is represented by 'b' and 'B'; 

while the other one is the green one, which is represented by 'c' and 'C'. Therefore, the 

original element 'a' is extended to 'baC', and the symbolic signal '0111001' is extended to 

the symbolic signal 'baCbAcbAcBAcbaCbaCBAc'. Then the same implementation 

mechamism in the conventional Lempel-Ziv is applied to obtain the complexity measure 

based on the new symbolic signal. 

By analyzing the improved Lempel-Ziv, if one more complex symbolic signal is added to 

the original symbolic signal, in an ideal context, the complexity will increase 

approximately to the multiplication of the two complexities. Ideally, the improved 

Lempel-Ziv can achieve to the maximum ratio (1: the number of extended element in the 

symbolic signal) between two stages in symbolic signal. Certainly, the imporved measure 

needs to consider a lot of factors to achieve the aim, such as the added symbolic signals, 

etc. Through the experiments, it is concluded that the improved Lempel-Ziv can not only 

capture more information from the biomedical signal but also satisfy the real time 

requirements. The results in Chapter 7 verify the effectiveness of the improved Lempel-

Ziv. Howerver, in order to make Lempel-Ziv more effective, the followings can further 
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explore the results and the future directions of our analysis of biomedical signals using 

Lempel-Ziv features: 

1) The concept of the Lempel-Ziv measure is based on the number of eigenwords (created 

based on building the sequence by coping its prefix to the sequence) in the symbol 

sequence. One possible further expansion of this measure can explore quantifying 

complexity based on factors other than eigenwords. 

2) The relationships between successive eigenwords can also be used as a source of 

information to extract the degree of randomness. 

3) In our proposed method, ‘Window’ is used to reduce the time consumption. However, 

such a division and its size affect the value of the Lempel-Ziv to some degree, and 

therefore needs further attention in the future. 

5.2.4 Multi-model analysis 

Multimodal signal processing [57] is an important research field that process signals and 

combines information from a variety of modalities - speech, vision, language, text- which 

significantly enhance the understanding, modeling, and performance of human-computer 

interaction devices or systems enhancing human-human communication.  

Hemorrhage affects multiple physiological systems at the same time. Moreover, many of 

such systems, e.g. cardiovascular and respiratory systems are highly correlated. As such, it 

is expected to find the highly informative relationship among the physiological signals 

captured from these systems. As a result, the proposed system will incorporate the 
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relationship among these physiological signals and their features to better represent the 

patterns of hemorrhage. More research in this field will be in the plan for the future work. 

5.3 Summary 

In this chapter, the proposed features in time domain and frequency domain were 

described. In addition, the chapter provided a brief description of the basic ideas of the 

Lempel-ziv measure, which is a nonlinear based method.  Multi-model analysis was also 

briefly described.  
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{CHAPTER 6 Error Correcting Output Code} 

 

6.1 Overview 

In the real world applications, learning problems contain both categories of binary 

learning problems and multiclass learning problems. A typical learning problem involves 

estimating an unknown function ( )f x whose domain input x is the feature vector which 

can be treated as a discrete set. If the learning problem is a binary one, k will be equal to 

2; while in multiclass learning problems, k will be larger than 2. As examples of multiclass 

learning problems, in digit recognition, the classifier is expected to map each hand-

written digit to one of 10k  classes, while in weather forecast, the classifier predicts the 

weather regime as sunny, windy, rainy, or cloudy.  

For multiclass learning problems, there are two general methodologies: 1) direct 

application of multiclass algorithms, such as artificial neural network (ANN) and decision 

tree algorithm; 2) using binary learning problem for multiclass learning problem. For the 

latter, the general trend includes one-against-one method and one-against-all method. 

An alternative approach is to employ distributed output code [58], pioneered by Sejnowski 

and Rosenberg. In this approach, a k classes learning problem with n typical attributes is 

considered as a distributed output code formulated by a k n code matrix. The code 

matrix has k different vectors, called codewords, each having n different elements (‘-1’ or 

‘1’). For each binary learning problem, according to the code matrix, the example is 

assigned two classes after going through the binary classifier. Finally, the outputs of these 
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n binary classifiers make up an n bits string. By attributing the n bits string to the nearest 

codeword, the example is classified to one of the k possible classes. Consider a digit 

recognition task as an example, as shown in Table 6.1 (for codewords) and Table 6.2 (for 

attributes). The digit recognition task has nine classes; each class having six attributes. 

Therefore, the code matrix has nine rows (corresponding to nine classes) and six columns 

(corresponding to six attributes). The learning problem with nine classes becomes the 

combination of six different binary learning problems. 

Table 6. 1: Distributed code for the digit recognition task 

 
Class Codeword 

vl hl dl cc ol or 

0 0 0 0 1 0 0 

1 1 0 0 0 0 0 

2 0 1 1 0 1 0 

3 0 0 0 0 1 0 

4 1 1 0 0 0 0 

5 1 1 0 0 1 0 

6 0 0 1 1 0 1 

7 0 0 1 0 0 0 

8 0 0 0 1 0 0 

9 0 0 1 1 0 0 
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Table 6. 2: Meanings of columns 

 

Column Position Abbreviation Meaning 

1 vl contains vertical line 

2 hl contains horizontal line 

3 dl contains diagonal line 

4 cc contains closed curve 

5 ol contains curve open to left 

6 or contains curve open to right 

 

Inspired by distributed code, Dietterich and Bakiri [59] introduced Error Correcting Output 

Codes (ECOC) as a multiclass learning problem. The approach views machine learning as a 

communication problem in which the identity of the correct output class for a new 

example is being “transmitted” over a channel. In the process, due to errors introduced 

by the finite training sample, poor choice of input features, and flaws in the learning 

process, the class information is corrupted. By encoding the class in an error correcting 

code and then “transmitting” the bits, the system may be able to better detect and 

correct the errors and therefore identify the output class. 

From the definition of distributed code and ECOC, it can be seen that the number of 

columns in distributed codes is identified by the attributes, while for ECOC the number of 

columns is not fixed.  

6.1.1 Conventional Error Correcting Output Codes 
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ECOC solves multiclass learning problems by combing the output of several binary 

classifiers and implements multiclass learning problems by an error correcting output 

code matrix. Fig 6.1 is the framework of Error Correcting Output Codes.  

1         -1         1         1         -1         -1         1

-1         1         1         1         1         -1         1

-1         1         -1         1         1         -1         1

1         -1         1         1         -1         -1         1

-1         1         1         1         1         -1         1

-1         1         -1         1         1         -1         1

H1 H2 H3 H4 H5 H6 H7

Code matrix

Code matrix

Binary classifier

1  

2  

3

Class

1  

2  

3

Code word

 

 
Figure 6. 1: Framework of Error Correcting Output Codes 

 
Assuming a k class problem, what is needed is a matrix with k rows, but the number of 

columns, n , is not limited as long as it satisfies the basic properties [56]. Each row 

represents a different class and the number in the matrix can take only two values, -1 or 

1. 

In the training stage, training samples are redefined according to the error correcting 

output code matrix. Resorting to each column, each training sample finds the matched 

row. The row number has the same value as class label of the training sample. Then, new 
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class label is defined using the value in the corresponding row. As such, training samples 

are fed into n binary classifiers to train them. 

In the testing stage, the testing samples are presented to the trained classifier. The 

output of the classifier is a vector with n elements, ‘-1’ or ‘1’. By calculating the Hamming 

distance between the vector and different rows of error correcting output code matrix, 

the class label of the testing sample with minimum Hamming distance is selected as the 

output class.  

6.1.2 Analysis 

For a code matrix M , if the Hamming distance of code matrix (i.e. the minimum 

Hamming distance among all different codewords) is d , the code can correct at least 

( 1) / 2d    single bit errors. In other words, if there are only ( 1) / 2d   errors, the 

nearest codeword will still be assigned as the correct codeword, or equivalently the 

correct class. That is why this method is called error correcting output codes. 

The main idea of ECOC is to form the prediction through “voting” by multiple binary 

classifiers. The boundaries between pair of classes can be learned and then improved 

many times according to the code matrix.  

Through the verification process, the use of the ECOC for multiclass learning problems 

can improve bias and variance of prediction [60]. Also, ECOC can be used to estimate 

probability [61]. At the same time, ECOC provide reasonable robustness against the 

changes in the size of the training sample and/or the distribution representation of 
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classes. These characteristics have made ECOC a very popular classification tool in many 

applications [62,63]. 

 In this study and base on our recent work [64], we have focused on the following 

improvement of ECOC:  

1) Since ECOC could correct ( 1) / 2d   errors, in order to make the result as accurate as 

possible one would like to make /d n as large as possible. Now, for a classification with k

classes, there will be at most 12 1k  non-trivial columns after removing complement 

columns as well as the column with all-ones or all-zeros (all-minus ones). Considering this 

exponential relationship, if k is too large, the time complexity of the classifier would 

become unreasonably large. This is a problem that needs to be addressed.  

2) Even when using an algorithm to select a subset of columns to make /d n as large as 

desired, it is difficult to find a systematic algorithm to obtain proper error correcting 

output code matrix. In addition, there is no practical method to test for optimality of such 

methods, or decide on how many columns to use, etc.  

3) For some complex problems, increasing /d n ratio may not help with solving the 

problems. In other words, the problem may not be solved just through the choice of error 

correcting output code matrix, because it also depends on the data as to which binary 

classifier might work. 

6.2 Related Work 

To better make use of the ECOC framework for multiclass learning problem, many 

researchers devote their energies in improving the capabilities of ECOC. As shown in Fig 
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6.1, ECOC has three main components in the framework: encoding process, code matrix, 

and decoding process.  

As to the encoding process, in order to gain better performance, the encoding step has to 

satisfy row separation and column separation as illustrated in Dietterich's study [59]. 

Originally, the improvements made to the ECOC mainly focused on improving the choice 

of ECOC matrix and revising the form of this matrix. The most known coding strategy is 

one-versus-all, in which each class is discriminated against the rest of classes. In [65], BCH 

error-correcting codes are employed as an output representation because of BCH’s 

desirable row and column separation.  

In Dietterich's study [59], other methods such as exhaustive codes, column selection from 

exhaustive codes, randomized hill climbing, and BCH codes were used to improved the 

ECOC.  It was suggested that ECOC may not be best improved while a “one-size-fits-all” 

design is used for the ECOC matrix. As such, some studies began to design problem-

dependent ECOC matrices [66,67]. These studies designed ECOC matrices by considering the 

distribution of the data. Another example of this type of work is [68] in which ECOC matrix 

is designed by building a binary tree. The binary tree is built by searching for the best 

partition set using Sequential Forward Floating Search (SFFS) [69], which is one of sub-

optimal search strategies. Such a search strategy can reduce the time complexity of the 

method to a large extent. The criterion used is Fast Quadratic Mutual Information (FQMI) 

on the partition set.  



www.manaraa.com

 

83 

To better separate binary classifiers, more advanced and effective methods employ 

classification accuracy as the criterion of designing the ECOC matrix [70,71]. In these 

methods, even more trees have to be built. Recently, it has been suggested that finding a 

large ECOC linear or nonlinear model for too complex learning problems, in which 

samples from multiple complex classes “diffuse” to each other’s space, may not be 

practical. Therefore, the formation of sub-ECOC [72,73] models is proposed to deal with 

complex learning problems. In these methods, the complex classes are divided into 

subclasses using a cluster approach, in particular for the cases in which the base classifier 

is not capable of distinguishing the classes. Sequential Forward Floating Search based on 

maximizing the Mutual Information is used to generate the subgroups of problems that 

cannot be modeled using the original set of classes and without the need of more 

classifier.  

For code matrix, the original ECOC uses only two values in the ECOC matrix, ‘1’ or ‘-1’ . In 

order to enhance the flexibility of ECOC, Allwein [74] introduces another element, ‘0’, to 

ECOC matrix, called ternary ECOC. ‘0’ in a column means that the corresponding class is 

ignored for the binary learning problem. Therefore, the code matrix can be extended to 

one-versus-one code matrix, dense code matrix, and parse code matrix. The common 

characteristic of these matrices is that they ignore some classes for each binary classifier. 

These methods are effective for specific dataset, not for all the dataset.  

For decoding matrix, the decoding strategies of original ECOC directed towards two 

values ECOC matrix. It involves Hamming distance, Inverse Hamming distance [75], 



www.manaraa.com

 

84 

Euclidean decoding. Koby Crammer [76] proposes to relax discrete code matrix into 

continuous code matrix. As to decoding strategies for ternary ECOC, whether the 

decoding strategies of the original ECOC are suitable for the ternary ECOC is discussed in 

[77]. It mentioned that it is not suitable to directly apply the decoding strategies of the 

original ECOC for the ternary one. The reason is two folds: 1) the existence of the 

decoding bias, which is the bias introduced by the comparison of a position coded by {-1, 

1} with the position containing the zero symbol, and 2) the presence of a dynamic range 

bias that corresponds to the difference among the ranges of values associated with the 

decoding process of each codeword. In the ternary decoding framework, all the existing 

decoding strategies are allocated to four types according to different values of the two 

biases. The existing ternary decoding strategies include the Attenuated Euclidean 

Decoding, Loss-based Decoding, Probabilistic-based Decoding [78], etc.  

The formulation of Attenuated Euclidean decoding is: 

2

1

( , ) ( )
n

j j j j

i i i

j

AED x y y x x y


                                         (56) 

where x is the prediction result; iy is the i th codeword and n is the length of codeword. 

From the formulation, the AED considers the influence of x and iy . It means that the 

measure will not be affected by the zero symbols in iy .  Loss-based decoding is proposed 

by E. Allwein [74]. In this method, a Loss-function model is applied to calculate the total 

loss on dataset. The element of the Loss-function is expressed as an expression, called 

margin. The formulation of Loss-based decoding is:  
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1

( , ) ( ( ))
n

j j

i i

j

LB x y L y f x


                                                 (57) 

where L is the loss function; f is the decision function for binary classifier and ( )j j

iy f x

is margin. The final decision is achieved by assigning a label to an example when it obtains 

the least loss. Probabilistic-based decoding uses the probability in each position of code 

matrix from the training dataset. In this approach, the formulation employs exponential 

functions. The study conducted by Escalera [77] categorizes all these existing ternary 

decoding strategies to just one class of approach and proposes two different decoding 

strategies using two different types of the frameworks:  Density and Loss-Weighted 

decoding methods.  All these methods, however, consider not only the influence of zero 

symbol but also the dynamic range by making the codeword work in the same dynamic 

range. The detail of Loss-Weighted Decoding will be explained in the Proposed Method. 

Experimental results reveal the performance of the methods in this category as well as 

the suitability of their decoding strategies.  

6.3 Proposed Method 

The different mechanisms to find the decision boundary make up different machine 

learning algorithms for not only binary learning problems but also multiclass learning 

problems. The main challenge in all types of machine learning algorithms is dealing with 

classes that contain data / sample overlap. The most common ways of dealing with issue 

include optional data deletion and extraction of extra feature. In the proposed research, 

attempting to deal with data overlapping problem, the proposed algorithm attempts to 
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decompose the learning problem, and use the ECOC as a tool to address the data 

overlapping. While the proposed system is still in progress, in the following sections, the 

general framework and the finished tasks are illustrated. 

6.3.1 Proposed framework of improved ECOC 

6.3.1.1 Analysis 

Experimental results show that adding problem dependent coding process to the ECOC is 

an efficient way to obtain more accurate result. However, the higher accuracy will 

negatively affect the ECOC’s error correcting ability. By analyzing the existing research on 

the ECOC, the proposed attempts to improve the ECOC while complying to the following 

design idea: 

1) Adopt BCH. The proposed work uses a specific type of error correcting output code, 

BCH, as code matrix. BCH is one of the most widely used error correcting output codes. 

On one side, it can correct multi-error at the same time, i.e. BCH has desirable row and 

column separation. On the other hand, the BCH avoids the choice of code matrix while 

providing reasonable error correcting ability. Finally, through the theory of error 

correcting output codes (shown in the following part), without knowing the real code, it 

can be known whether or not the transmitted code is correct. This characteristic of BCH 

can help form a cascade structure.  

 2) Adopt SVM as binary classifier. Some of the prevalent phenomena in the practical 

datasets of learning problem include data /sample imbalance and small sample size. SVM 

can deal with this type of problems more effectively and will make the system more 
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robust toward the variations among datasets. The parameters of SVM can be set as 

reasonable fixed values due to the operations in the next step, which relieves from using 

cross validation to get the best parameters. 

3) Decompose learning problem. For a learning problem, if the samples in classes, at least 

under some conditions, are normally distributed, the data distribution in both binary 

learning problems and multiclass learning problems satisfy some relatively traceable 

behavior. Therefore, the proposed research assumes that the data points in one class 

make up several normal distributions. These normal distributions have different 

mathematical expectations and standard deviations that separate them from each other 

while the union of the sub-classes is still forming the same class. After training, the 

proposed research allocates the original dataset into different layers (The preliminary 

decision is three layers).  In each layer, the region is divided into two sub-regions. One of 

sub-regions has high level of confidence on the prediction result, while the other one has 

low confidence on the prediction result and will transmit the dataset into the next layer 

to classify.  

4) Apply voting in different layers. From the horizontal perspective, the improved ECOC 

has three layers; while from the vertical perspective, there are data points on which a 

reliable decision cannot be reached. For such points, the decision is also formed using a 

“voting” mechanism. The voting process can happen in different layers.  
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5) Use a parallel strucutre. Multi binary classifiers are designed to work in a relatively 

independent way. This will allow the proposed improved version of the ECOC to be 

implemented in a parallel environment. 

6.3.2 The framework of improved ECOC 

Fig 6.2 is the schematic diagram of our proposed improved ECOC. The proposed improved 

ECOC will include three layers. In the following part, for layer one and layer two, the 

general process will be introduced. However, for layer three, it is not entirely finished. 

The details of the thir layer will be left for the future work. 

1) Layer one:   

The code matrix is BCH. For each binary classifier, SVM is employed as base function. 

Using confidence and credibility measure [79] in SVM, the proposed method divides the 

dataset into two groups: one is in the “sure” region, and the other one is in “unsure” 

region. Distance from the hyper-plane is employed to identify these regions. The unsure 

data points are transmitted to the next layer, and at the same time, the structure of the 

dataset is saved in Structure One . 

 Structure One is implemented just by setting threshold about confidence. The threshold 

can take the confidence of point, which is wrongly classified, and has the maximum value 

on confidence.  For binary classifier, it is reasonable to have two thresholds in both 

‘positive’ side and ‘negative’ side. 

2) Layer two:  
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The data points transmitted from the previous layer is the overlapping data points. 

Inspired by the sub-class ECOC, the data overlapping problem is solved by the sub-class 

ECOC. In the process, EM clustering algorithm [80] is employed. Once the sub-class is 

formed, Sequential Forward Floating Search (SFFS) is used to find the best partition with 

the assigned criterion. The most reasonable criterion, i.e. the accuracy of the classifier, is 

employed. Finally, a binary tree  is built to form the final code matrix. At the same time, 

the structure of dataset is saved in Structure Two.  

Structure Two is set using a table. If the code matrix of sub-class ECOC is k n , the table 

will have 2n  rows. Each prediction result is allocated into the unit of the table by 

calculating the decimal from Binary string (prediction result). 

Layer one:

Layer two:

Layer three

Structure two

Structure one

 

 
Figure 6. 2: The schematic of improved ECOC 
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3) Layer three: The exact design of this layer is not finalized, and is a work in progress. 

This topic will be one of the main focuses on the future work for this research.  Therefore, 

the results are the preliminary results from the first two layers. 

In the next sections, some of the main elements of the proposed system are introduced in 

detail.  

6.3.3 BCH 

BCH [81] is a family of cyclic codes with good error-correcting ability in which block length 

is specified and acceptable error value is achieved. For example, BCH(k,n,t) represents k 

classes, n columns and t errors, which can be corrected. The theory of BCH lies in strong 

mathmatical basis of group theory. The problem in using BCH is a the insufficiency of 

structure, because until now the BCH, the way it is used, only supplies the code with a 

limited length and the value of k. Therefore, in real application this utilization of the BCH 

results in a mismatch between the number of class labels and the number of labels that 

BCH can supply. However, the number of the classes in BCH may be chosen to exceed the 

the number of labels in the application, assuming that it is feasible to choose the same 

number of rows in the BCH as the labels in the problem in hand without too much 

manipulation of the problem. This assumption, however, needs to be verified in the 

future, and for every specific application. 

6.3.4 Description of improved ECOC algorithm  

Although the complete system is not proposed, in the following section, a detailed 

description of the algorithms for the first two layers is given. 
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Table 6.3, depicts the ideas of the improved ECOC. The starting point of the improved 

ECOC is to solve the decision boundary, which presents challenges for the the training 

process. The clustering step is only used in the uncertain region, where the wrongly 

predicted data points are located. In this aspect, it is different from the original subclass 

idea [72]. Another aspect, which is distinguishes the proposed algorithm, is that the 

clustering is employed instead of dividing the dataset into two datasets continuously until 

certain conditions are satisfied. Table 6.4 illustrates the design idea in the second layer. In 

the proposed algorithm, two inner algorithms, Column Code Binary Tree (CCBT) and 

Sequential Forward Floating Search (SFFS), are adopted from the work method proposed 

by O. Pujol [68]. However, unlike Pujol’s, in ours algorithm and when using the SFFS, the 

mutual information between the feature data and its class label is replaced with the 

accuracy. The reason for doing so is that SFFS achieves a higher level of enery by choosing 

features based on the specific mechamism/measures and since the overall purpose is to 

have higher accuracy, we are directly using accuracy as the measure to be increased in 

the SFFS. 

Table 6. 3 Algorithm for Improved ECOC 

Improved ECOC: Given a coding matrix G of BCH according to the number 
of labels in the application. 
 
1) Scale training and testing dataset simultaneously. 

2) For each binary classification problem, which correspons to one column 
of G 

 Construct new training dataset. 

 Predict the accuracy 1A for original training dataset and predicted 
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labels 1Pvector for original testing dataset. 

 Predict  the accuracy 2A for original training dataset and predicted 

labels 2Pvector for original testing dataset from the second layer. 

 If 1A is bigger than 2A , 1Pvector is the final predicted labels; 

otherwise, 2Pvector is the final predicted labels. 

 
3) Constrcut the codeword for each sample of original testing dataset. 

4) Decoding using hamming distance. 
 

 

Table 6. 4 Algorithm for the second layer 

The second layer:  Input: predicted labels for original training dataset, 

original training dataset, original testing dataset. Output: the accuracy 2A

for original training dataset and predicted labels 2Pvector . 

 
1) Calculate two values ,Tpos and Tneg, to decide safety area and unsafety 

area. 

 

2) If any of Tpos and Tneg indicates errorless for predicting original training 

dataset, exit; otherwise, enter next step. 

 
3) Project the data  points into higher dimension space according to the 

used kernel function. These data points will be used in the following step. 

 
4) For data points of original training dataset in unsafety area 

 Produce clusters using EM algorithm. 

 Produce new code matrix G' using CCBT and SFFS. 

 Produce performace matrix H. 

 
5) For each binary classification problem, which correspons to one column 
of G' 

 Construct new training dataset. 

 Predict original training dataset and original testing dataset in 

unsafety area. 

 
6) Construct the codeword using the predicted label both in safety area and 
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unsafety area for original training dataset and original testing datast. 

 
7) Decoding using Loss-Weighted strategy. 

 
6.3.5 Loss-Weighted Decoding 

Loss-Weighted Decoding is proposed by S. Escalera [77]. In this work, using training 

samples, a performance matrix H is constructed as follows: 
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where ),( ji is the position of a performance matrix H ; the performance matrix H has 

the same size with the code matrix M ; ih is the binary classifier; i corresponds to the i th 

class; j corresponds to the j th column of the code matrix; m represents the number of 

training samples in each class.  

The performance matrix H is further normalized to wM , which is considered as a discrete 

probability density function. The equation (60) is used for the normalization function. 
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The following pseudo code describes the algorithm for Loss-Weighted Algorithm. Given a 

coding matrix M , 

1) Calculate the performance matrix H : 
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2) Normalize H : 
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3) Given a test data sample  , decode based on: 
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where L is the defined loss function, and f is the output of the binary classifier. 

Throughout the analysis of the Loss-Weighted algorithm, the following characteristics are 

satisfied.  

1) The decoding strategy considers not only decoding bias but also the dynamic range 

bias. The decoding bias is compensated for by the zero in performance matrix; while the 

dynamic range bias is compensated for by the normalization.  

2) The performance matrix can be treated as the performance of each binary classifier. It 

can also be treated as the probability of the prediction. 

3) The formulation (64) shows that the Loss-Weighted decoding fully integrates Loss-

based decoding, margin of the binary classifier, and the probability of the prediction 

together.  

6.4  Summary 
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In this chapter, the new model for multiclass ECOC learning system was proposed and 

discussed. The chaper also providede the advantages and disadvantages of ECOC as well 

as the reasons to use and improve the ECOC. In order to gain a more efficient 

classification tool, the framework of the proposed improved ECOC is introduced with 

detailed explanations. 
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{CHAPTER 7 Results and Discussion} 

 

7.1 Results for Preprocessing 

7.1.1 Adaptive noise filter 

7.1.1.1 Adaptive notch filter 

One objective of the proposed system is the removal of unwanted frequencies around 

0Hz as well as 60Hz. As the frequencies around zero are excluded the filter acts as a high 

pass filter. In order to lessen the influence of the time varying components, first, one 

needs to set a suitable parameter N  to obtain a desirable level of time-varying 

component, N . Fig 7.1. shows the value of the time-varying component N for 

different values of N . 

  

 

Figure 7. 1. The resulting value of N (left: N =256; right: N =4096) 

 

Figure 7.1 indicates that the value of N determines the degree at which the time varying 

component influences the filter. In general, with the increase in the value of N , this 
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influence decreases gradually. In this study, the value of N was set to 10000. The 

parameter  identifies whether or not the adaptation converges. The value of  should be 

greater than 0 but less than the reciprocal of the largest eigenvalue,  , of the matrix R , 

which is defined as the correlation matrix of signal. In this study, the value of  was set to 

0.0001. The bandwidth of the filter can be approximated using the following equation:  

)/(
2

2

srad
T

CN
BW


                                                                   (65) 

Fig 7.2 shows the transfer function of the resulting adaptive notch filter, and as expected, 

this filter acts as a high-pass filter. Note that the value of C provides yet another degree 

of freedom for this filter design process, and hence, Figure 7.2 presents the transfer 

function for two different filters formed using two different values of C, each resuing to a 

very different bandwidth. A main advantage of the adpative noth filter used here is that 

changing the values of parameters N ,  and C can provide a wide spectrum of desired 

filters with diverse shapes of transfer function. 

  

 
Figure 7. 2. Transfer function for two choices of adaptive notch filters (left: C =1; right: C =0.01) 
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Adaptive notch filter for frequencies around 60Hz is designed similarly. The parameter N  

was to 2048,  to 0.001 and C to 0.1. Figure 7.3 depicts the transfer function of the 

resulting adaptive notch filter. 

 

 
Figure 7. 3. Transfer function of the adaptive notch filter around 60Hz 

 
7.1.1.2 Experimental Results and Problems Analysis 

First the results of the reference method are manually examined in all 91 subjects, and a 

unified ‘span’ value in the reference method [82] can provide desirable results in removing 

the baseline wander. This value for all experimental results was 1500. The details of the 

results are shown for 72 out of 91 subjects in Table 7.1; for these subjects the proposed 

algorithm can achieve almost the same results as the reference method. The results 

remaining 19 subjects will be discussed separately. 

In Table 7.1, ‘subject’ is the code of the subject undergoing LBNP; ‘shift’ and ‘elevation’ 

are the values for adjustments from the original independent component (baseline 

wander) to form the new baseline wander in the horizontal and vertical directions; 
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‘error1’ represents the difference between the old baseline wander ( 1sig ) and the 

baseline wander ( sig ) from the reference method calculated as: nsigsigerror 2

11 )(  ; 

and finally ‘error2’ represents the difference between the new baseline wander (
2sig ) and 

the baseline wander ( sig ) from the reference method calculated as: 

nsigsigerror 2

22 )(  .   

Table 7. 1 Experimental results of removing the baseline wander 

 

subject 
shift/ 

elevation 
error1 error2 subject 

Shift/ 
elevation 

error1 error2 

A013S 290/0 2.0996 0.7847 A159S 290/1 19.8874 0.8131 

A026S 250/1 28.1832 2.7037 A160S 290/1 14.3623 2.6499 

A096S 300/4 193.9524 3.4495 A161S 260/1 8.8582 6.4787 

A106S 300/1 24.3905 1.0727 A162S 300/4 135.0286 3.0056 

A109S 300/3 89.1358 3.6282 A163S 290/1 29.5551 2.7541 

A110S 290/2 17.9017 1.1614 A164S 300/1 43.3923 3.0052 

A111S 300/1 28.955 1.0623 A165S 290/0 51.0465 6.9241 

A112S 200/0 107.7542 13.4439 A166S 290/0 31.9213 5.4646 

A114S 300/2 203.8138 4.0846 A167S 290/1 9.7597 1.3328 

A115S 290/2 81.7942 2.2818 A168S 270/1 22.7897 1.3598 

A116S 290/2 256.3747 8.7264 A170S 290/2 93.5265 1.899 

A120S 300/2 41.0977 2.4223 A171S 290/0 8.7422 1.5607 

A121S 260/1 44.2238 2.279 A173S 350/6 892.829 74.3034 

A122S 260/2 101.7592 2.3317 A176S 300/3 209.4986 6.3436 

A123S 310/2 700.1481 101.429 A177S 300/3 60.5121 2.6645 

A124S 290/1 12.7575 1.3522 A178S 290/1 3.7123 0.9486 

A125S 290/1 45.6429 2.6412 A179S 290/4 247.2271 5.138 

A127S 310/0 36.8833 11.8224 A180S 250/1 32.0128 2.8609 

A128S 290/1 9.1224 1.88 A182S 310/0 20.1471 1.336 

A130S 290/2 181.3923 23.0193 A183S 310/0 5.2858 4.0839 

A131S 300/2 25.4492 2.6421 A185S 290/0 7.1664 0.9526 

A132S 370/4 252.4353 8.5616 A186S 300/1 35.4656 0.8932 

A133S 260/2 304.7066 7.4637 A187S 290/1 10.9895 0.8653 

A134S 290/1 116.9048 3.77 A189S 300/3 115.7327 4.8387 

A135S 300/1 16.3922 1.05 A191S 300/1 26.7803 0.7141 

A136S 290/0 3.4748 0.6671 A192S 290/2 9.3222 2.8809 

A137S 300/2 144.4347 1.8579 A193S 290/1 16.9436 0.9469 

A140S 290/0 23.9724 2.1641 A195S 300/0 27.7014 1.7794 

A142S 290/1 14.5089 0.2205 A207S 290/1 55.1891 4.9226 

A143S 290/1 155.3859 3.6707 A208S 310/6 620.3234 8.0999 

A148S 300/1 50.6959 2.6757 A210S 400/2 23.6969 0.5595 
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A149S 300/1 27.2665 1.101 A212S 290/2 36.63757 1.4766 

A151S 300/1 56.7045 1.999 A216S 290/2 241.5044 11.7279 

A154S 290/2 324.4399 10.0313 A217S 290/1 5.5229 0.3386 

A155S 300/1 42.6266 0.8791 A219S 290/2 173.1734 7.0318 

A156S 290/2 539.7357 31.3238 A220S 300/2 77.4627 3.2468 

 

As it can be seen in Table 7.1, for all cases error2 is significantly smaller that error1 which 

shows the impact that the method in “purifying” the baseline wander and creating a 

better estimate of the drift.  In order to better assess the performance of the proposed 

method in removing the baseline wander, more analysis are conducted on the results.  

Figure 7.4 and Figure 7.5 show that the shift and elevation for all 72 subjects. As it can be 

seen, both of these variables, are almost the same for all subjects and do not change 

across different subjects (x-axis) or vary in a small scope. This observation illustrates the 

reason to adjust the parameters between the old baseline wander and the new baseline 

wander. 

 

 

Figure 7. 4 Value of 'shift' that adjust the old baseline wander to form the new one for all 72 subjects 
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Figure 7. 5 Value of 'elevation' that adjust the old baseline wander to form the new one for all 72 subjects 

Figure 7.6 shows the error reduction in 72 subjects after adjusting shift and elevation 

value. It can be seen that in all these cases the errors decreases significantly after 

adjusting the baseline wander compared with the baseline wander. The average 

percentage of error reduction AverEreaches up to 90.13%. The formulation of the 

average percentage of error reduction is shown in the following: 
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where i is the index of subject, and n is the total number of subjects. 

 
 

Figure 7. 6. Improved percentages of error after adjustment 
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As mentioned above, on the ECG of 19 subjects, the results of the proposed method and 

the reference method are not close, i.e. the value of error2 is a big value. As mentioned 

above we have visually inspected all 91 cases. By examining the signals for these 19 cases, 

the high value of error2 does not come from the inability of the proposed method to 

remove the baseline wander. Slightly adjusting some parameters, such as the number of 

independent components, can alleviate the situation.  

7.1.2 QRS Complex detection 

In order to verify the effectiveness of our algorithm, the MIT dataset is used as the 

testbed. The MIT dataset [83] contains the total of 48 subjects. Each subject has an ECG 

recording of about thirty minutes (sample rate: 360Hz). The variation of ECG signals is due 

to presence of arrhythmia. Subjects 106, 231 and 232 have the condition in which the RR 

interval changes heavily while for subjects 104, 106, 108, 114, 116, 200, 203, 207, 208, 

215, 222, 228 and 231, the amplitude of R waves varies significantly. As to the other 

subjects, their ECGs are often noisy. Table 7.1 presents the result of our approach. The 

technique results in an accuracy, sensitivity, and specificity of 99.89%, of 99.89%, of 

99.92%, respectively. Moreover, the point insertion process corrects the placement of R 

in 97.27% of the originally missed R waves.    

For further validation of our approach, the results were compared with those of other 

QRS complex detection algorithms. For comparability, several issues were considered: 1) 

each algorithm uses all the subjects in the MIT dataset; 2) each algorithm is a different 

but major type of detection algorithm (e.g. wavelet, filter, or filter bank); 3) the 
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preprocessing of ECG signal is also done differently. Table 7.2 represents the statistical 

comparison of different algorithms. 

 
Table 7. 2: The performance of the proposed QRS complex detection algorithm  

(1
st 

column: subject name; 2
nd

 column: #total beats; 3
rd 

column: #wrongly detected beats; 4
th

 column: 
#missing detected beats; 5

th
 column: period controller; 6

th
 column: amplitude controller; 7

th
 column: # 

total beats before insertion)) 

 
subject total Wrong missing A b beats before insertion 

100 2264 0 0 0.2 1.8 2265 

101 1861 0 0 0.2 1.8 1861 

102 2179 0 0 0.2 1.8 2179 

103 2075 0 2 0.2 1.8 2072 

104 2218 0 4 0.2 3 2052 

105 2567 0 2 0.2 1.8 2564 

106 2006 0 3 0.2 3 1952 

107 2114 1 10 0.2 3 2105 

108 1754 0 1 0.2 1.8 1743 

109 2522 0 0 0.2 1.8 2512 

111 2126 10 0 0.2 3 2063 

112 2531 1 0 0.2 1.8 2531 

113 1788 0 0 0.2 1.8 1788 

114 1879 5 1 0.2 3 1112 

115 1945 0 0 0.2 1.8 1943 

116 2376 0 4 0.2 1.8 2364 

117 1531 0 0 0.2 1.8 1531 

118 2269 0 0 0.2 1.8 2269 

119 1981 0 0 0.2 3 1981 

121 1854 0 1 0.2 1.8 1853 

122 2466 0 0 0.2 1.8 2467 

123 1512 0 0 0.2 1.8 1512 

124 1612 1 0 0.2 3 1582 

200 2582 2 3 0.2 3 2577 

201 1919 4 8 0.2 3 1905 

202 2122 0 0 0.2 1.8 2109 

203 2657 5 20 0.2 3 2384 

205 2624 1 0 0.2 1.8 2623 

207 2027 0 1 0.2 1.8 1916 

208 2912 0 11 0.2 1.8 2889 

209 2997 0 0 0.2 3 2997 

210 2588 1 8 0.2 3 2527 

212 2739 0 0 0.2 1.8 2739 

213 3239 0 1 0.2 1.8 3230 

214 2246 0 2 0.2 3 2239 

215 3340 0 1 0.2 3 3344 

217 2184 0 5 0.2 1.8 2136 

219 2144 1 0 0.2 1.8 2140 

220 2039 0 0 0.2 1.8 2039 

221 2416 0 0 0.2 3 2405 

222 2397 3 0 0.2 3 2300 

223 2588 1 4 0.2 3 2435 

228 2026 15 23 0.3 3 878 

230 2248 2 0 0.2 1.8 2248 

231 1592 28 0 0.2 3 1566 
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232 1787 5 0 0.2 3 1777 

233 3056 0 2 0.2 1.8 3043 

234 2744 0 0 0.2 1.8 2743 

 108643 86 116   105490 

 

Table 7. 3: The statistical comparison of different QRS complex detection algorithms 

 
7.1.3 Systole&Diastole detection 

In order to verify the effectiveness of our algorithm, LBNP is used as the testbed. In LBNP 

dataset, 93 subjects are employed. Each subject has an ABP recording of about forty 

seven minutes (sample rate: 500Hz). The variation of ABP signals is due to presence of 

volume loss in the upper body. Table.7.3 is the result of our algorithm. The accuracy is 

99.95%.  

Table 7. 4: The performance of the proposed Systole&Diastole detection 

 
Subject Total S Missing S False S Total D Missing D False D 

A103S 3871 0 0 3871 0 0 

A026S 2798 0 0 2798 0 0 

A096S 3676 0 0 3676 0 0 

A106S 2700 0 0 2700 0 0 

A109S 3481 3 0 3480 3 0 

A110S 2097 1 0 2096 1 0 

A111S 2871 1 0 2870 1 0 

A112S 1797 1 0 1797 1 0 

A113S 3092 4 25 3092 4 25 

A114S 3138 0 0 3138 0 0 

A115S 3468 0 0 3468 0 0 

A116S 2113 0 0 2114 0 0 

A117S 3331 0 0 3331 0 0 

A120S 3000 4 0 2999 4 0 

A121S 2666 0 0 2666 0 0 

A122S 2795 0 0 2794 0 0 

A123S 2429 0 0 2429 0 0 

A124S 2654 2 1 2654 2 1 

A125S 3453 0 1 3453 0 1 

A126S 2859 0 0 2860 0 0 

A127S 3039 2 0 3039 2 0 

A128S 3081 0 0 3081 0 0 

Method # TP #FP #FN #total errors 

[29] 90909 406 374 780 

[26] 116079 58 166 224 

[77] 116004 133 174 307 

[24] 109019 248 340 588 

[25] 109375 240 239 479 

Our algorithm 108521 86 116 202 
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A130S 3105 0 0 3104 0 0 

A131S 2843 0 0 2843 0 0 

A132S 2540 0 0 2540 0 0 

A133S 2925 0 0 2924 0 0 

A134S 1751 0 0 1751 0 0 

A135S 3132 0 0 3132 0 0 

A136S 3183 0 1 3182 0 1 

A137S 1798 0 0 1799 0 0 

A140S 2092 0 1 2091 0 1 

A141S 3610 0 0 3609 0 0 

A142S 2942 0 0 2942 0 0 

A143S 2185 4 1 2185 4 1 

A144S 4089 5 0 4089 5 0 

A147S 2245 0 0 2245 0 0 

A148S 2352 0 0 2351 0 0 

A149S 2666 0 0 2666 0 0 

A150S 2249 0 0 2248 0 0 

A151S 2116 0 0 2115 0 0 

A153S 2451 1 1 2451 1 1 

A154S 2951 0 0 2951 0 0 

A155S 3314 0 0 3313 0 0 

A156S 2560 0 0 2559 0 0 

A157S 2145 0 0 2145 0 0 

A158S 3490 0 0 3490 0 0 

A159S 2375 0 0 2375 0 0 

A160S 2353 0 0 2353 0 0 

A161S 2486 0 0 2485 0 0 

A162S 2739 0 0 2739 0 0 

A163S 3356 0 16 3356 0 16 

A164S 2738 6 0 2737 6 0 

A165S 2684 5 0 2683 5 0 

A166S 2215 0 0 2215 0 0 

A167S 2276 0 0 2277 0 0 

A168S 2484 0 0 2484 0 0 

A170S 2745 0 2 2745 0 2 

A171S 3831 0 0 3832 0 0 

A172S 2108 0 0 2108 0 0 

A173S 2395 0 0 2394 0 0 

A174S 3824 0 0 3824 0 0 

A175S 2490 0 0 2490 0 0 

A176S 3430 57 4 3430 57 4 

A177S 3385 6 0 3385 6 0 

A178S 3079 0 0 3079 0 0 

A179S 2325 0 0 2325 0 0 

A180S 4015 0 10 4014 0 10 

A181S 3641 0 0 3641 0 0 

A182S 2503 2 0 2502 2 0 

A183S 3903 2 3 3903 2 3 

A184S 2529 0 1 2529 0 1 

A185S 3588 0 0 3588 0 0 

A186S 3066 5 4 3065 5 4 

A187S 2840 0 0 2840 0 0 

A189S 2591 2 0 2590 2 0 

A190S 2458 0 0 2458 0 0 

A191S 2713 0 0 2713 0 0 

A192S 2184 0 0 2184 0 0 

A193S 2846 0 0 2846 0 0 

A194S 3001 0 0 3000 0 0 

A195S 2490 2 46 2490 2 46 
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A207S 4156 0 0 4156 0 0 

A208S 2305 0 0 2304 0 0 

A209S 2119 0 0 2119 0 0 

A210S 2291 0 0 2291 0 0 

A212S 1453 0 0 1453 0 0 

A213S 3386 0 0 3386 0 0 

A214S 3744 1 0 3744 1 0 

A216S 1931 0 0 1930 0 0 

A217S 1276 0 0 1275 0 0 

A218S 2214 4 0 2214 4 0 

A219S 2544 7 1 2545 7 1 

A220S 2242 10 0 2241 10 0 

 258490 137 118 258468 137 118 

 

7.2 Results for Feature Extraction 

After the completion of QRS complex detection and Systole&Diastole detection, most of 

features can be extracted. In the following part, the result of improved Lempel-ziv is 

presented. 

7.2.1 Conventional Lempel-Ziv 

The dataset used for this study is also the LBNP dataset. 93 subjects are employed. Each 

subject has an ECG recording of about forty seven minutes (sample rate: 500Hz). The 

variation of the ECG signals is due to the presence of the simulated blood loss. For the 

LBNP dataset, there are eight stages. The objective of calculating Lempel-ziv is to 

distinguish the mild, moderate, and severe stages from these 8 LBNP stages for each of 

the subjects. 

The calculation of Lempel-Ziv obeys the following rules:  1) The raw ECG signal is used to 

calculate Lempel-Ziv; 2) In each stage, the window used to extract a portion of signal to 

be analyzed has a fixed size; 3) There is no overlap between different windows; 4) The 

threshold used is the medium value of the signal in the window. Fig 7.7 is mean-variance 
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plot of the result of Lempel-Ziv in different stages. X-axis stands for the LBNP stage, and Y-

axis stands for the scope of Lempel-Ziv with mean and variance. Fig 7.8 is mean-variance 

plot of the result of Lempel-Ziv in three stages (Mild, Moderate and Severe) on raw signal 

(left) and RR signal (right). From the figure, it is shown that Lempel-Ziv cannot distinguish 

different LBNP stages from each other. 

 

 

Figure 7. 7: The result of Lempel-ziv in different stages 

 

  

 

Figure 7. 8 Mean-variance plot of Lempel-ziv in three stages on raw signal (left) and RR signal (right) 

7.2.2 Improved Lempel-Ziv 

To verify the effectiveness of improved Lempel-Ziv, Both mean-variance plot of improved 

Lempel-Ziv and accuracy are presented. 
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Fig 7.9 shows the mean-variance plot of improved Lempel-ziv in three stages based on RR 

signal using different elements. From top to bottom, they are elements with one digit, 

five digits, twenty one digits, and forty six digits, respectively. Seen from the continous 

figures, it is evident that the captured information increases as the size of elements 

enlarges. 

To better illustrate the effectiveness of improved Lempel-Ziv, the accuracy is also 

compared with the conventional Lempel-Ziv. The calculation of accuracy in classifying 

mild, moderate and servere is made  based only on one feature, that is the conventional 

Lempel-Ziv or the improved Lempel-Ziv. Several classifiers are employed to test the result, 

as shown in Table 7.5. From the table, it can be seen that the improved Lempel-Ziv can 

better represent the patterns of volume loss.  
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Figure 7. 9. Mean-variance plot of improved Lempel-Ziv using different element 

 
Table 7. 5. Accuracy comparison between improved Lempel-Ziv and conventional Lempel-Ziv 

 

Type J48 
Multilayer 
Perceptron 

ByesNet DecisionTable 
Decision 
Stump 

RBFNetwork 

Improved 
Lempel-Ziv 

63.6 63.2 63.3 63.7 62.3 63.2 

Conventional 
Lempel-Ziv 

64.2 54.2 59 63.3 54.9 54.8 

 
7.3 Results for Error Correcting Output Codes 

The improved version of Error Correcting Output codes includes three layers. The design 

of the third layer is still in process. In the following sections, the intermediate results 

verifying the value in the proposed Error Correcting Output Codes are presented. 

7.3.1 Cascade Structure 
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The results of our previous research show that the building of a cascade classifier can 

improve accuracy of the ECOC, and will not result in overfitting. One of the reasons for 

such improvements can be the property of BCH, that is, without comparing the predicted 

and actual class labels, it can be identify whether testing samples are classified correctly 

or not.   

For testing and validation, the cascade structure is tested against the real datasets from 

the SVM website. Table.7.6 shows the attributes in the datasets. In order to verify 

effectiveness of the proposed method, the results of the following two ECOC classifiers 

are compared with each other: 1) The ECOC with just BCH matrix (classifier#1); 2) The 

proposed ECOC with BCH matrix equipped with the decoding step and cascade structure 

(classifier#2). The two classifiers have the same BCH and both of them are combined with 

the binary classifier support vector machine (SVM), which uses the same parameters in 

different datasets. Error correcting output codes used are shown in Table.7.7. 

Table 7. 6: Experimental dataset 

 
Name class features Training samples Testing samples 

satimage 6 36 4,435 2,000 

Shuttle 7 9 43,500 14,500 

Usps 10 256 7,291 2,007 

Letter 26 16 15,000 5,000 

Dna 3 180 2,000 1,186 

Vowel 11 10 528 462 
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Table 7. 7: Error correcting output codes 

 
Name Classifier#1 Classifier#2 

satimage BCH(31,6) BCH(31,6,7) 

shuttle BCH(63,7) BCH(63,7,15) 

usps BCH(511,10) BCH(511,10,121) 

letter BCH(63,30) BCH(63,30,6) 

dna BCH(15,5) BCH(15,5,3) 

vowel BCH(31,11) BCH(31,11,5) 

 

Table.7.8 shows error correcting performance of two different classifiers ((1): Minimum 

Hamming distance, (2): Minimum error correcting ability, and (3): Automatic error 

correcting ability) 

Table 7. 8: Error correcting performance 

 
Name Classifier#1 Classifier#2 

(1) (2) (3) (1) (2) (3) 

satimage 15 7 0 15 0 7 

shuttle 31 15 0 31 0 15 

usps 255 127 0 255 0 121 

letter 13 6 0 13 0 6 

dna 7 3 0 7 0 3 

vowel 11 5 0 11 0 5 
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Table.7.9 shows the accuracies of classifier#1 and classifier#2. From the table, it can be 

seen that the accuracies obtained in all five datasets for the proposed method are equal 

or higher than those of the other method, although the degree of improvement of 

accuracy may not be significant. The difference among the two methods is in their 

capacity to deal with error. Specifically, when the strength of noise and error is more than 

the maximum error correcting ability of the method, changes / noise would result in 

decoding a new code into a wrong original codeword.  

Table 7. 9: Accuracy of two classifiers 

 
Name Classifier#1 Classifier#2 

satimage 91.45% 91.50% 

shuttle 99.67% 99.67% 

usps 95.02% 95.07% 

letter 89.94% 81.80% 

dna 91.65% 91.74% 

vowel 55.19% 56.49% 

 

7.3.2 Confidence Measure 

In our previous work, we focused on the observation by the community that prediction of 

classification confidence as the degree of reliability is a much needed step. In the 
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proposed improved ECOC, decomposing original dataset into two parts is a step 

employed. Confidence can be used as the criterion to split dataset.  

The prediction with confidence is called conformal prediction. The original conformal 

prediction assumes that the training and testing samples come from the same 

distribution. Each sample has an associated conformity score or non-conformity score. 

Both conformity and non-conformity scores can be interpreted as measures of 

‘supportiveness’ of the sample. As such, the ‘supportiveness’ is also called confidence. 

The confidence is formed through calculating n times if there are n testing samples and 

each time just one testing sample is supplied to the classifier. However, if there are n

testing samples and all of them are supplied at the same time, it will take 2n times to get 

all the confidence measure for all the testing samples.  

As discussed in previous work, the original conformal prediction has high computational 

complexity. In order to provide not only higher accuracy and lower computational 

complexity but also more confidence in the resulting predictions, we proposed the 

concept of dynamic conformal prediction (DCP), and designed a new form of confidence.  

The experimental results verify the effectiveness of the dynamic conformal prediction. 

Both clinical and non-clinical datasets are employed to test and verify the effectiveness of 

our proposed method. Clinical datasets (94088 samples with 18 features) are based on 

MIT-BIT to detect arrhythmia. Non-clinical datasets (five datasets 'australian' (690/14), 

'breast-cancer' (683/10), 'diabetes' (768/8), 'heart' (270/13), 'liver-disorders' (345/6), 

'splice' (1000/60)) from Lib-SVM website  were used. Non-clinical and clinical datasets are 
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employed to test the proposed methods. For base classifier, SVM, the best parameters 

are set, which are selected based on 10-fold cross validation. 

7.3.2.1 Non-clinical applications 

The nature of data has no time-sequence, thus the DCP without updated training samples 

was used. The results (Fig.7.10) of accuracy, time complexity, and average errors are 

presented in (a), (b) and (c), respectively. The purpose of average errors (errors: each 

time, use the confidence of a data point as the current confidence. The error is the 

number of samples if correctly classified if confidences are below its current confidence, 

and wrongly classified if confidences are above its current confidence) is to test how 

reliable the confidence measure is. The results show that the accuracies, running time 

and average errors using proposed the method are superior to the original method. 

 

(a) accuracy 
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(b) running time 

 

(c) average errors 

 
Figure 7. 10: The result of accuracy, running time and average errors 

 
In Fig.7.11, horizontal axis stands for conformity or non-conformity scores; and the 

vertical axis shows confidence. Fig.7.11 shows the confidences curves of all data for both 

the original method (Fig 7.11.a and 7.11.c) and our proposed method (Fig 7.11.b and 

7.11.d). Five datasets ('australian', 'breast-cancer', 'diabetes', 'heart', 'liver-disorders') in 

six have relatively similar results for both methods because the confidence increases as 

conformity (or non-conformity) score increases. However, one dataset ('splice') shows 

abnormal behavior in the original method (Fig 7.11.c) as when conformity (or non-

conformity) score is around the same value, confidence does not show a clear pattern. 
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However, our measure for the same dataset (Fig. 7.11.d) shows a clear and well-

accentuated pattern of confidence. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 7. 11: The shape of confidences for all data in one dataset 
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7.3.2.2 Clinical application 

The total number of ECG beats in the MIT-BIT dataset is 40,000 beats, which includes 

28987 healthy beats and 11,013 arrhythmia beats. First, feature extraction is performed 

on each beat using the methodology described in [84,85], and totally 17 features are 

extracted. Then using the extracted features, DCP with updated training samples is used 

for classification. The resulting accuracy is 98.23% which is significantly higher than that 

of the original CP which is 94.75%. Also, the time complexity in our proposed method is 

significantly reduced from 2,750 seconds (in CP) to 54,063 seconds. 

7.3.3 Solving Data Overlapping using sub-ECOC 

Although it is not finished for the design of the whole system, the finished part has the 

characteristics of the first two layers, as mentioned above.  To illustrate the result of the 

finished parts, in the experiment, two datasets [83] (vowel and satimage) are adopted. As a 

comparision, conventional ECOC and direct multiclass classifier, libsvm, from weka are 

employed. In order to level the two methods, the parameters in libsvm are the same as 

the parameters in binary classifiers of conventional ECOC and the improved ECOC. They 

use three degree polynomial kernel function with cost C and gamma G changing in 

different values.  

7.3.3.1 Comparision based on accuracy 

I. Vowel 

The dataset has eleven classes. In each subject, it includes 10 features. And, there 

are 528 training data points and 462 testing data points. The employed BCH is BCH 
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(15,11,1). The cost C changes from 0.01 to 1000 and gamma G change from 0.0001 to 

10. 

 
(a) 

 
(b) 

 
(c) 

 
Figure 7. 12. Accuracy comparision between two methods (Vowel) 
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In figure.7.12, it shows the accuracy comparision. X-axis represents cost C; Y-axis 

indicates gamma G; and Z-axis shows the accuracy difference between two methods. 

As shown in figure.7.12, the sub figure (a), (b), and (c) give the accuracy comparision 

between conventional ECOC and improved ECOC, between multiclass classifier and 

conventional ECOC, and between multiclass classifier and improved ECOC, 

respectively. From the figures, it tells us that, based on Vowel dataset, the 

conventional ECOC and improved ECOC get most the same results. At the same time, 

the accuracy presents difference between conventional ECOC/improved ECOC and 

multiclass classifier according to each combination of C and G.  

In order to see more clearly about the result, table 7.10 and table 7.11 show the 

accuracy value for each combination of C and G (row: C, column: G).  

Table 7. 10 accuracy of improved ECOC and conventional ECOC 

 

0.3463 0.0952 0.0909 0.0909 0.0909 0.0909 

0.3117 0.2641 0.0909 0.0909 0.0909 0.0909 

0.2965 0.3398 0.0909 0.0909 0.0909 0.0909 

0.2965 0.3463 0.0952 0.0909 0.0909 0.0909 

0.2965 0.3117 0.2641 0.0909 0.0909 0.0909 

0.2965 0.2965 0.3398 0.0909 0.0909 0.0909 
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Table 7. 11 accuracy of multiclass classifier 

 

0.1840 0.5450 0.4760 0.4240 0.4220 0.4220 

0.1840 0.5410 0.4760 0.4240 0.4220 0.4220 

0.1970 0.6260 0.5130 0.4180 0.4220 0.4220 

0.1970 0.6490 0.5390 0.4740 0.4160 0.4220 

0.1970 0.6620 0.5690 0.5130 0.4570 0.4160 

0.1970 0.6620 0.5820 0.5350 0.5040 0.4550 

 

II. Satimage 

The dataset has six classes. In each subject, it includes 36 features. And, there are 

4435 training data points and 2000 testing data points. The employed BCH is BCH 

(31,6,7). The cost C changes from 0. 1 to 100 and gamma G change from 0.001 to 1. 

In figure.7.13, it shows the accuracy comparision. X-axis represents cost C; Y-axis 

indicates gamma G; and Z-axis shows the accuracy difference between two methods. 

As shown in figure.7.13, the sub figure (a), (b), and (c) give the accuracy comparision 

between conventional ECOC and improved ECOC, between multiclass classifier and 

conventional ECOC, and between multiclass classifier and improved ECOC, 

respectively. From the figures, it tells us that, based on Satimage dataset, the 

conventional ECOC and improved ECOC produce different results. At the same time, 

the accuracy presents difference between conventional ECOC/improved ECOC and 

multiclass classifier according to each combination of C and G.  
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(a) 

 
(b) 

 
(c) 

 
Figure 7. 13 Accuracy comparisions between two methods (Satimage) 

 
Again, in order to see more clearly about the result, table 7.12, table 7.13 and 

table 7.14 show the accuracy value for each combination of C and G (row: C, column: 

G). These tables show that the improved ECOC works. 
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Table 7. 12 accuracy of improved ECOC 

 
0.7495 0.7390 0.7255 0.3710 

0.7710 0.7495 0.7390 0.7255 

0.7745 0.7710 0.7495 0.7390 

0.7750 0.7750 0.7710 0.7495 

 

Table 7. 13 accuracy of conventional ECOC 

 
0.8810 0.7955 0.1985 0.1985 

0.8870 0.8165 0.2685 0.1985 

0.8690 0.8350 0.5370 0.1985 

0.8570 0.8810 0.7955 0.1985 

 

Table 7. 14 accuracy of multiclass classifier 

 
0.8930 0.7530 0.2310 0.2310 

0.8930 0.8290 0.2960 0.2310 

0.8790 0.8840 0.6070 0.2310 

0.8740 0.8930 0.7530 0.2310 

 

7.3.3.2 Comparision based on time consumption 

According to the experiments without figures supplied, compared with conventional 

ECOC and direct multiclass classifier, the time consumption in the proposed ECOC is 

extremely large, which is a obvious disadvantage. 
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7.4 Results for Hemorrhage Prediction 

7.4.1 Separate results for ABP and ECG  

To verify the effect of ABP and ECG towards hemorrhage, the results are given separately. 

For ECG signal, the dataset include 91 subjects all together. Each subject contains 49 

features. For ABP signal, the dataset include 91 subjects all together. Each subject 

contains 50 features. Two methods, ten fold cross validation and leave one out cross 

validation, are used to get the average accuracy. The classifier employed is libsvm, which 

is excuted through Matlab and weka interface. They use radial basis kernel function with 

C changing from 0.01 to 10000, gamma G changing from 0.00001 to 10.  

Before implementing ten fold cross validation, all instances, which are the individuals of 

each stage are shuffled. Table 7.15 is the accuracy of each combination of cost C (row) 

and gamma G (column) for ECG signal. The maximum accuracy is 94.13% as shown. 

Table 7. 15 accuracy of ECG using ten fold cross validation 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.4461 0.6656 0.6243 0.4470 0.4461 0.4461 0.4461 

0.1 0.8406 0.7105 0.6674 0.6290 0.4477 0.4461 0.4461 

1 0.9277 0.7875 0.6872 0.6674 0.6288 0.4477 0.4461 

10 0.9413 0.8910 0.7259 0.6752 0.6673 0.6288 0.4477 

100 0.9407 0.9284 0.7775 0.6991 0.6744 0.6672 0.6289 

1000 0.9405 0.9360 0.8504 0.7332 0.6865 0.6743 0.6672 

10000 0.9405 0.9301 0.9005 0.7676 0.7098 0.6858 0.6738 
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Before implementing leave one subject out cross validation, all instances, which are the 

patients, are shuffled. Each time, ten percentage of patients are chosen to be testing 

dataset, and the rest are picked as training dataset. Table 7.16 is the accuracy of each 

combination of cost C (row) and gamma G (column) with standardization for ECG signal. 

The maximum accuracy is 84.75% as shown. 

Table 7. 16 accuracy of ECG using leave one subject out cross validation 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.7941 0.8219 0.7747 0.4454 0.4452 0.4452 0.4452 

0.1 0.8168 0.8371 0.8212 0.7756 0.4455 0.4452 0.4452 

1 0.8378 0.8432 0.8369 0.8214 0.7755 0.4455 0.4452 

10 0.8240 0.8434 0.8444 0.8351 0.8213 0.7756 0.4455 

100 0.8175 0.8325 0.8459 0.8446 0.8349 0.8211 0.7755 

1000 0.8174 0.8174 0.8400 0.8457 0.8426 0.8349 0.8210 

10000 0.8174 0.7946 0.8290 0.8475 0.8458 0.8420 0.8349 

 

The same operations are taken on ABP signal. Table 7.17 is the accuracy of each 

combination of cost C (row) and gamma G (column) using ten fold cross validation. The 

maximum accuracy is 91.74% as shown. Table 7.18 is the accuracy of each combination of 

cost C (row) and gamma G (column) using leave one subject out cross validation with 

standardization. The maximum accuracy is 86.73% as shown. 
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Table 7. 17 accuracy of ABP using ten fold cross validation 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.4604 0.6994 0.6421 0.4461 0.4461 0.4461 0.4461 

0.1 0.7654 0.7379 0.7055 0.6496 0.4461 0.4461 0.4461 

1 0.9033 0.8038 0.7319 0.7057 0.6505 0.4461 0.4461 

10 0.9174 0.8751 0.7619 0.7292 0.7057 0.6501 0.4461 

100 0.9174 0.9124 0.8069 0.7501 0.7293 0.7059 0.6504 

1000 0.9174 0.9121 0.8524 0.7718 0.7463 0.7293 0.7058 

10000 0.9174 0.9089 0.8869 0.8045 0.7594 0.7447 0.7293 

 

Table 7. 18 accuracy of ABP using leave one subject out cross validation 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.6705 0.8225 0.6788 0.4452 0.4452 0.4452 0.4452 

0.1 0.8231 0.8474 0.8232 0.6889 0.4452 0.4452 0.4452 

1 0.8462 0.8633 0.8485 0.8233 0.6903 0.4452 0.4452 

10 0.8334 0.8652 0.8641 0.8469 0.8235 0.6903 0.4452 

100 0.8337 0.8459 0.8673 0.8621 0.8470 0.8235 0.6904 

1000 0.8337 0.8263 0.8626 0.8663 0.8599 0.8471 0.8233 

10000 0.8337 0.8241 0.8475 0.8658 0.8660 0.8602 0.8472 

 

7.4.2 Results for whole dataset 
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Through the steps, preprocessing and feature extraction, the hemorrhage dataset is 

formed, which will be used to predict the severity of hemorrhage. The dataset include 91 

subjects all together. Each subject contains 99 features from ECG signal and ABP signal. 

To verify the result of the extracted dataset. Two methods, ten fold cross validation and 

leave one out cross validation, are used to get the average accuracy.  The classifier 

employed is libsvm, which is excuted through Matlab and weka interface. They use radial 

basis kernel function with cost C changing from 0.01 to 10000, gamma G changing from 

0.00001 to 10.  

Before implementing ten fold cross validation, all instances, which are the individuals of 

each stage are shuffled. Table 7.19 is the accuracy of each combination of cost C (row) 

and gamma G (column). The maximum accuracy is 96.99% as shown. 

Table 7. 19. Results on ten fold cross validation 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.4461 0.7018 0.6744 0.5117 0.4461 0.4461 0.4461 

0.1 0.4685 0.7976 0.7292 0.6812 0.5245 0.4461 0.4461 

1 0.9470 0.9365 0.7722 0.7279 0.6818 0.5255 0.4461 

10 0.9494 0.9693 0.8619 0.7504 0.7282 0.6819 0.5257 

100 0.9494 0.9695 0.9328 0.7973 0.7456 0.7282 0.6819 

1000 0.9494 0.9699 0.9574 0.8641 0.7740 0.7450 0.7280 

10000 0.9494 0.9699 0.9590 0.9195 0.8108 0.7707 0.7450 
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Before implementing leave one out cross validation, all instances, which are the patients, 

are shuffled. Each time, ten percentage of patients are chosen to be testing dataset, and 

the rest are picked as training dataset.  

Table 7. 20. Results on leave one out cross validation without standardization 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.4452 0.6773 0.6661 0.5117 0.4452 0.4452 0.4452 

0.1 0.4452 0.7052 0.6998 0.6730 0.5252 0.4452 0.4452 

1 0.5829 0.6863 0.6990 0.7022 0.6737 0.5264 0.4452 

10 0.5827 0.6743 0.6916 0.6922 0.7022 0.6739 0.5266 

100 0.5827 0.6786 0.6701 0.6964 0.6894 0.7022 0.6738 

1000 0.5827 0.6790 0.6706 0.6925 0.6907 0.6891 0.7022 

10000 0.5827 0.6790 0.6787 0.6698 0.6930 0.6897 0.6897 

 
 

Table 7. 21. Results on leave one out cross validation with standardization 

 
       10 1 0.1 0.01 0.001 0.0001 0.00001 

0.01 0.4452 0.8330 0.8000 0.4905 0.4452 0.4452 0.4452 

0.1 0.7265 0.8606 0.8405 0.8011 0.4997 0.4452 0.4452 

1 0.8108 0.8726 0.8649 0.8409 0.8015 0.5006 0.4452 

10 0.8144 0.8708 0.8735 0.8615 0.8407 0.8015 0.5008 

100 0.8144 0.8553 0.8733 0.8699 0.8595 0.8407 0.8015 

1000 0.8144 0.8549 0.8685 0.8727 0.8694 0.8591 0.8407 

10000 0.8144 0.8549 0.8510 0.8744 0.8694 0.8700 0.8589 
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Table 7.20 is the accuracy of each combination of cost C (row) and gamma G (column) 

without standardization. The maximum accuracy is 70.52% as shown. Table 7.21 is the 

accuracy of each combination of cost C (row) and gamma G (column) with 

standardization. The maximum accuracy is 87.44% as shown. 

7.5 Computational time for hemorrhage prediction 

This section is to evaluate the computational time of the system. The configurations of 

the computer are as follows: four cores computer with 2.0 GHz for each of them. The 

computational time of the system contains two parts. One is dataset collecting time. The 

other one is prediction time (the classifier is connected in weka through Matlab). In the 

research, totally, 91 subjects are used, and 9443 instances are collected. Total running 

time for these instances is 2.1327e+04 seconds. Therefore, for each instance, the feature 

collecting time is 2.2585 seconds. For prediction time, the number of the combination of 

C and G is 49, and the cross validation is ten fold cross validation. Total running time for 

training and predicting is 6.1915e+0.4 seconds. Therefore, for each trainning dataset and 

testing dataset, the prediction time is 126.3578 seconds. This number is closely related to 

the connection between Matlab and Weka, and many factors. It means that this number 

can be improved to a large extent. 

7.6 Summary 

In this Chapter, the results are presented in subpart of the proposed computer aided 

decision making system. First, the performance of adaptive notch filter is given. Then, two 

detection algorithms, QRS complex detection algorithm and Systole&Diastole detection 
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algorithm, are tested using real datasets (MIT dataset and LBNP dataset). In the following 

part, it is given the trend for using Lempel-ziv to predict the stages of hemorrhage shock. 

Then, the results from parts of the improved ECOC are presented, which are used to 

combine in the framework of the proposed improved ECOC. Finally, the results of the 

whole system, the results about the stage estimation of hemorrhage, are given.  
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{CHAPTER 8 Conclusions and Future Work} 

 

8.1 Conclusion 

Trauma is a serious problem threatening human life in current society. Hemorrhage, in 

particular, is an important factor encountered in many traumatic injuries and need to be 

addressed using effective diagnostic methods. In this research, a computer-aided decision 

making system is proposed for this purpose. Specifically, the proposed computer-aided 

decision making system help physicians decide the presence and severity of hemorrhage. 

The accurate and timely information supplied by the system can greatly promote the 

efficiency of diagnosis and treatment.  

In the proposed research, the following tasks are accomplished. 

1) In the preprocessing step, an adaptive notch filter is analyzed and deduced. Compared 

with existing notch filter, the effect of the adaptive notch filter can be adapted just by 

adjusting the adaptation constant. The implementation of the adaptive notch filter can 

improve the overall performance of the adaptive filter. Also, blind source separation is 

employed to remove baseline wander. 

2) In the preprocessing step, a novel QRS complex detection algorithm is proposed. The 

design of QRS complex detection algorithm is an effective way to detection peaks in ECG 

signal and can greatly improve the accuracy of any computer aided decision making based 

on ECG. 
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3) In the preprocessing step, another novel Systole&Diastole detection algorithm is 

proposed. The novelty of the Systole&Diastole detection algorithm lies in effectively 

decomposing the ABP signal into components, and detecting Systolic and Diastolic peaks 

using the relationship among these components. The experimental results reveal the high 

accuracy of the proposed Systolic and Diastolic peaks. 

4) In the feature extraction, a new version of Lempel-ziv is designed and implemented. 

Although the original idea of Lempel-ziv may not provide a very effective method of 

detecting hemorrhage, an improved version of Lempel-ziv is desired to achieve this aim. 

Also, based on ECG and ABP, a couple of features are designed, and verified to effectively 

represent hemorrhage. 

5) In the decision making section, a general framework for the improved version of Error 

Correcting Output Codes is proposed. Some parts of this framework are finished and 

tested. Error Correcting Output Codes is a flexible model for multiclass learning problems. 

8.2 Future Work 

Many tasks have been accomplished in the proposed research. However, there are still 

some future works that need to conduct: 

1) In the preprocessing step, a new method to remove baseline wander is tried. 

Experimental results verified the correctness of the direction. However, many factors are 

needed to explore to improve the effectivenss of the method. For example, construct 

multisignals to better represent the statistical informatioin; choose more effective G 
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function; locate the individual component, baseline wander, directly to save time 

consumption, etc. 

2) In the preprocessing step, while the experimental results show the effectiveness of the 

proposed QRS detection algorithm and Systole&Diastole detection algorithm, as 

discussed above, if it is desired to achieve even better results. As such, some parts of the 

QRS detection algorithm and Systole&Diastole detection algorithms need further 

improvements.  

3) In the feature extraction step, multi model analysis will be explored. By looking through 

related research, there is no such a research to explore and detect the characteristic of 

hemorrhage. The success of multi model analysis for hemorrhage can greatly help the 

overall objectives of this research. 

4) In decision making step, the third layer in the framework of the proposed extension of 

ECOC will be designed. At the same time, many other factors may be added to improve 

the current version of the Error Correcting Output Codes.  

8.3 Summary 

In this chapter, first a brief conclusion of the finished research is provided. Then, the main 

future work to be conducted as the continuation of the project is outlined.
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